Vulnerabilities (CVE)

Filtered by vendor Nodejs Subscribe
Total 163 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2021-22921 3 Microsoft, Nodejs, Siemens 3 Windows, Node.js, Sinec Infrastructure Network Services 2024-11-21 4.4 MEDIUM 7.8 HIGH
Node.js before 16.4.1, 14.17.2, and 12.22.2 is vulnerable to local privilege escalation attacks under certain conditions on Windows platforms. More specifically, improper configuration of permissions in the installation directory allows an attacker to perform two different escalation attacks: PATH and DLL hijacking.
CVE-2021-22918 2 Nodejs, Siemens 2 Node.js, Sinec Infrastructure Network Services 2024-11-21 5.0 MEDIUM 5.3 MEDIUM
Node.js before 16.4.1, 14.17.2, 12.22.2 is vulnerable to an out-of-bounds read when uv__idna_toascii() is used to convert strings to ASCII. The pointer p is read and increased without checking whether it is beyond pe, with the latter holding a pointer to the end of the buffer. This can lead to information disclosures or crashes. This function can be triggered via uv_getaddrinfo().
CVE-2021-22884 5 Fedoraproject, Netapp, Nodejs and 2 more 13 Fedora, Active Iq Unified Manager, E-series Performance Analyzer and 10 more 2024-11-21 5.1 MEDIUM 7.5 HIGH
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to DNS rebinding attacks as the whitelist includes “localhost6”. When “localhost6” is not present in /etc/hosts, it is just an ordinary domain that is resolved via DNS, i.e., over network. If the attacker controls the victim's DNS server or can spoof its responses, the DNS rebinding protection can be bypassed by using the “localhost6” domain. As long as the attacker uses the “localhost6” domain, they can still apply the attack described in CVE-2018-7160.
CVE-2021-22883 5 Fedoraproject, Netapp, Nodejs and 2 more 9 Fedora, E-series Performance Analyzer, Node.js and 6 more 2024-11-21 7.8 HIGH 7.5 HIGH
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to a denial of service attack when too many connection attempts with an 'unknownProtocol' are established. This leads to a leak of file descriptors. If a file descriptor limit is configured on the system, then the server is unable to accept new connections and prevent the process also from opening, e.g. a file. If no file descriptor limit is configured, then this lead to an excessive memory usage and cause the system to run out of memory.
CVE-2020-8287 5 Debian, Fedoraproject, Nodejs and 2 more 5 Debian Linux, Fedora, Node.js and 2 more 2024-11-21 6.4 MEDIUM 6.5 MEDIUM
Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 allow two copies of a header field in an HTTP request (for example, two Transfer-Encoding header fields). In this case, Node.js identifies the first header field and ignores the second. This can lead to HTTP Request Smuggling.
CVE-2020-8277 4 C-ares Project, Fedoraproject, Nodejs and 1 more 8 C-ares, Fedora, Node.js and 5 more 2024-11-21 5.0 MEDIUM 7.5 HIGH
A Node.js application that allows an attacker to trigger a DNS request for a host of their choice could trigger a Denial of Service in versions < 15.2.1, < 14.15.1, and < 12.19.1 by getting the application to resolve a DNS record with a larger number of responses. This is fixed in 15.2.1, 14.15.1, and 12.19.1.
CVE-2020-8265 5 Debian, Fedoraproject, Nodejs and 2 more 5 Debian Linux, Fedora, Node.js and 2 more 2024-11-21 6.8 MEDIUM 8.1 HIGH
Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 are vulnerable to a use-after-free bug in its TLS implementation. When writing to a TLS enabled socket, node::StreamBase::Write calls node::TLSWrap::DoWrite with a freshly allocated WriteWrap object as first argument. If the DoWrite method does not return an error, this object is passed back to the caller as part of a StreamWriteResult structure. This may be exploited to corrupt memory leading to a Denial of Service or potentially other exploits.
CVE-2020-8252 3 Fedoraproject, Nodejs, Opensuse 3 Fedora, Node.js, Leap 2024-11-21 4.6 MEDIUM 7.8 HIGH
The implementation of realpath in libuv < 10.22.1, < 12.18.4, and < 14.9.0 used within Node.js incorrectly determined the buffer size which can result in a buffer overflow if the resolved path is longer than 256 bytes.
CVE-2020-8251 2 Fedoraproject, Nodejs 2 Fedora, Node.js 2024-11-21 5.0 MEDIUM 7.5 HIGH
Node.js < 14.11.0 is vulnerable to HTTP denial of service (DoS) attacks based on delayed requests submission which can make the server unable to accept new connections.
CVE-2020-8201 3 Fedoraproject, Nodejs, Opensuse 3 Fedora, Node.js, Leap 2024-11-21 5.8 MEDIUM 7.4 HIGH
Node.js < 12.18.4 and < 14.11 can be exploited to perform HTTP desync attacks and deliver malicious payloads to unsuspecting users. The payloads can be crafted by an attacker to hijack user sessions, poison cookies, perform clickjacking, and a multitude of other attacks depending on the architecture of the underlying system. The attack was possible due to a bug in processing of carrier-return symbols in the HTTP header names.
CVE-2020-8174 3 Netapp, Nodejs, Oracle 9 Active Iq Unified Manager, Oncommand Insight, Oncommand Workflow Automation and 6 more 2024-11-21 9.3 HIGH 8.1 HIGH
napi_get_value_string_*() allows various kinds of memory corruption in node < 10.21.0, 12.18.0, and < 14.4.0.
CVE-2020-8172 2 Nodejs, Oracle 5 Node.js, Banking Extensibility Workbench, Blockchain Platform and 2 more 2024-11-21 5.8 MEDIUM 7.4 HIGH
TLS session reuse can lead to host certificate verification bypass in node version < 12.18.0 and < 14.4.0.
CVE-2020-10531 9 Canonical, Debian, Fedoraproject and 6 more 11 Ubuntu Linux, Debian Linux, Fedora and 8 more 2024-11-21 6.8 MEDIUM 8.8 HIGH
An issue was discovered in International Components for Unicode (ICU) for C/C++ through 66.1. An integer overflow, leading to a heap-based buffer overflow, exists in the UnicodeString::doAppend() function in common/unistr.cpp.
CVE-2019-9512 5 Apache, Apple, Canonical and 2 more 6 Traffic Server, Mac Os X, Swiftnio and 3 more 2024-11-21 7.8 HIGH 7.5 HIGH
Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service. The attacker sends continual pings to an HTTP/2 peer, causing the peer to build an internal queue of responses. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-5739 2 Nodejs, Opensuse 2 Node.js, Leap 2024-11-21 5.0 MEDIUM 7.5 HIGH
Keep-alive HTTP and HTTPS connections can remain open and inactive for up to 2 minutes in Node.js 6.16.0 and earlier. Node.js 8.0.0 introduced a dedicated server.keepAliveTimeout which defaults to 5 seconds. The behavior in Node.js 6.16.0 and earlier is a potential Denial of Service (DoS) attack vector. Node.js 6.17.0 introduces server.keepAliveTimeout and the 5-second default.
CVE-2019-5737 2 Nodejs, Opensuse 2 Node.js, Leap 2024-11-21 5.0 MEDIUM 7.5 HIGH
In Node.js including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1, an attacker can cause a Denial of Service (DoS) by establishing an HTTP or HTTPS connection in keep-alive mode and by sending headers very slowly. This keeps the connection and associated resources alive for a long period of time. Potential attacks are mitigated by the use of a load balancer or other proxy layer. This vulnerability is an extension of CVE-2018-12121, addressed in November and impacts all active Node.js release lines including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1.
CVE-2019-1559 13 Canonical, Debian, F5 and 10 more 90 Ubuntu Linux, Debian Linux, Big-ip Access Policy Manager and 87 more 2024-11-21 4.3 MEDIUM 5.9 MEDIUM
If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q).
CVE-2019-15606 5 Debian, Nodejs, Opensuse and 2 more 7 Debian Linux, Node.js, Leap and 4 more 2024-11-21 7.5 HIGH 9.8 CRITICAL
Including trailing white space in HTTP header values in Nodejs 10, 12, and 13 causes bypass of authorization based on header value comparisons
CVE-2019-15605 6 Debian, Fedoraproject, Nodejs and 3 more 13 Debian Linux, Fedora, Node.js and 10 more 2024-11-21 7.5 HIGH 9.8 CRITICAL
HTTP request smuggling in Node.js 10, 12, and 13 causes malicious payload delivery when transfer-encoding is malformed
CVE-2019-15604 5 Debian, Nodejs, Opensuse and 2 more 10 Debian Linux, Node.js, Leap and 7 more 2024-11-21 5.0 MEDIUM 7.5 HIGH
Improper Certificate Validation in Node.js 10, 12, and 13 causes the process to abort when sending a crafted X.509 certificate