Total
147 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2024-21891 | 1 Nodejs | 1 Node.js | 2025-03-28 | N/A | 8.8 HIGH |
Node.js depends on multiple built-in utility functions to normalize paths provided to node:fs functions, which can be overwitten with user-defined implementations leading to filesystem permission model bypass through path traversal attack. This vulnerability affects all users using the experimental permission model in Node.js 20 and Node.js 21. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. | |||||
CVE-2016-9840 | 9 Apple, Boost, Canonical and 6 more | 20 Iphone Os, Mac Os X, Tvos and 17 more | 2025-03-28 | 6.8 MEDIUM | 8.8 HIGH |
inftrees.c in zlib 1.2.8 might allow context-dependent attackers to have unspecified impact by leveraging improper pointer arithmetic. | |||||
CVE-2023-23920 | 2 Debian, Nodejs | 2 Debian Linux, Node.js | 2025-03-17 | N/A | 4.2 MEDIUM |
An untrusted search path vulnerability exists in Node.js. <19.6.1, <18.14.1, <16.19.1, and <14.21.3 that could allow an attacker to search and potentially load ICU data when running with elevated privileges. | |||||
CVE-2024-21892 | 2 Linux, Nodejs | 2 Linux Kernel, Node.js | 2025-03-13 | N/A | 7.8 HIGH |
On Linux, Node.js ignores certain environment variables if those may have been set by an unprivileged user while the process is running with elevated privileges with the only exception of CAP_NET_BIND_SERVICE. Due to a bug in the implementation of this exception, Node.js incorrectly applies this exception even when certain other capabilities have been set. This allows unprivileged users to inject code that inherits the process's elevated privileges. | |||||
CVE-2023-23918 | 1 Nodejs | 1 Node.js | 2025-03-12 | N/A | 7.5 HIGH |
A privilege escalation vulnerability exists in Node.js <19.6.1, <18.14.1, <16.19.1 and <14.21.3 that made it possible to bypass the experimental Permissions (https://nodejs.org/api/permissions.html) feature in Node.js and access non authorized modules by using process.mainModule.require(). This only affects users who had enabled the experimental permissions option with --experimental-policy. | |||||
CVE-2023-23919 | 1 Nodejs | 1 Node.js | 2025-03-12 | N/A | 7.5 HIGH |
A cryptographic vulnerability exists in Node.js <19.2.0, <18.14.1, <16.19.1, <14.21.3 that in some cases did does not clear the OpenSSL error stack after operations that may set it. This may lead to false positive errors during subsequent cryptographic operations that happen to be on the same thread. This in turn could be used to cause a denial of service. | |||||
CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 311 Http Server, Opensearch Data Prepper, Apisix and 308 more | 2025-03-07 | N/A | 7.5 HIGH |
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | |||||
CVE-2023-30589 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2025-02-13 | N/A | 7.5 HIGH |
The llhttp parser in the http module in Node v20.2.0 does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS). The CR character (without LF) is sufficient to delimit HTTP header fields in the llhttp parser. According to RFC7230 section 3, only the CRLF sequence should delimit each header-field. This impacts all Node.js active versions: v16, v18, and, v20 | |||||
CVE-2024-21890 | 1 Nodejs | 1 Node.js | 2025-02-12 | N/A | 6.5 MEDIUM |
The Node.js Permission Model does not clarify in the documentation that wildcards should be only used as the last character of a file path. For example: ``` --allow-fs-read=/home/node/.ssh/*.pub ``` will ignore `pub` and give access to everything after `.ssh/`. This misleading documentation affects all users using the experimental permission model in Node.js 20 and Node.js 21. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. | |||||
CVE-2019-9516 | 12 Apache, Apple, Canonical and 9 more | 21 Traffic Server, Mac Os X, Swiftnio and 18 more | 2025-01-14 | 6.8 MEDIUM | 6.5 MEDIUM |
Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory. | |||||
CVE-2019-9513 | 12 Apache, Apple, Canonical and 9 more | 22 Traffic Server, Mac Os X, Swiftnio and 19 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU. | |||||
CVE-2019-9514 | 13 Apache, Apple, Canonical and 10 more | 30 Traffic Server, Mac Os X, Swiftnio and 27 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both. | |||||
CVE-2019-9518 | 11 Apache, Apple, Canonical and 8 more | 20 Traffic Server, Mac Os X, Swiftnio and 17 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU. | |||||
CVE-2019-9517 | 12 Apache, Apple, Canonical and 9 more | 25 Http Server, Traffic Server, Mac Os X and 22 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both. | |||||
CVE-2019-9515 | 12 Apache, Apple, Canonical and 9 more | 24 Traffic Server, Mac Os X, Swiftnio and 21 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | |||||
CVE-2019-9511 | 12 Apache, Apple, Canonical and 9 more | 22 Traffic Server, Mac Os X, Swiftnio and 19 more | 2025-01-14 | 7.8 HIGH | 7.5 HIGH |
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | |||||
CVE-2018-12121 | 2 Nodejs, Redhat | 8 Node.js, Enterprise Linux, Enterprise Linux Desktop and 5 more | 2024-12-27 | 5.0 MEDIUM | 7.5 HIGH |
Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Denial of Service with large HTTP headers: By using a combination of many requests with maximum sized headers (almost 80 KB per connection), and carefully timed completion of the headers, it is possible to cause the HTTP server to abort from heap allocation failure. Attack potential is mitigated by the use of a load balancer or other proxy layer. | |||||
CVE-2018-12123 | 1 Nodejs | 1 Node.js | 2024-12-13 | 4.3 MEDIUM | 4.3 MEDIUM |
Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Hostname spoofing in URL parser for javascript protocol: If a Node.js application is using url.parse() to determine the URL hostname, that hostname can be spoofed by using a mixed case "javascript:" (e.g. "javAscript:") protocol (other protocols are not affected). If security decisions are made about the URL based on the hostname, they may be incorrect. | |||||
CVE-2018-12122 | 2 Nodejs, Suse | 4 Node.js, Suse Enterprise Storage, Suse Linux Enterprise Server and 1 more | 2024-12-13 | 5.0 MEDIUM | 7.5 HIGH |
Node.js: All versions prior to Node.js 6.15.0, 8.14.0, 10.14.0 and 11.3.0: Slowloris HTTP Denial of Service: An attacker can cause a Denial of Service (DoS) by sending headers very slowly keeping HTTP or HTTPS connections and associated resources alive for a long period of time. | |||||
CVE-2023-39332 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2024-11-21 | N/A | 9.8 CRITICAL |
Various `node:fs` functions allow specifying paths as either strings or `Uint8Array` objects. In Node.js environments, the `Buffer` class extends the `Uint8Array` class. Node.js prevents path traversal through strings (see CVE-2023-30584) and `Buffer` objects (see CVE-2023-32004), but not through non-`Buffer` `Uint8Array` objects. This is distinct from CVE-2023-32004 which only referred to `Buffer` objects. However, the vulnerability follows the same pattern using `Uint8Array` instead of `Buffer`. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. |