Vulnerabilities (CVE)

Filtered by vendor Linux Subscribe
Total 10898 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2023-5158 1 Linux 1 Linux Kernel 2024-11-21 N/A 6.5 MEDIUM
A flaw was found in vringh_kiov_advance in drivers/vhost/vringh.c in the host side of a virtio ring in the Linux Kernel. This issue may result in a denial of service from guest to host via zero length descriptor.
CVE-2023-5090 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-11-21 N/A 6.0 MEDIUM
A flaw was found in KVM. An improper check in svm_set_x2apic_msr_interception() may allow direct access to host x2apic msrs when the guest resets its apic, potentially leading to a denial of service condition.
CVE-2023-52886 1 Linux 1 Linux Kernel 2024-11-21 N/A 6.4 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix race by not overwriting udev->descriptor in hub_port_init() Syzbot reported an out-of-bounds read in sysfs.c:read_descriptors(): BUG: KASAN: slab-out-of-bounds in read_descriptors+0x263/0x280 drivers/usb/core/sysfs.c:883 Read of size 8 at addr ffff88801e78b8c8 by task udevd/5011 CPU: 0 PID: 5011 Comm: udevd Not tainted 6.4.0-rc6-syzkaller-00195-g40f71e7cd3c6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xd9/0x150 lib/dump_stack.c:106 print_address_description.constprop.0+0x2c/0x3c0 mm/kasan/report.c:351 print_report mm/kasan/report.c:462 [inline] kasan_report+0x11c/0x130 mm/kasan/report.c:572 read_descriptors+0x263/0x280 drivers/usb/core/sysfs.c:883 ... Allocated by task 758: ... __do_kmalloc_node mm/slab_common.c:966 [inline] __kmalloc+0x5e/0x190 mm/slab_common.c:979 kmalloc include/linux/slab.h:563 [inline] kzalloc include/linux/slab.h:680 [inline] usb_get_configuration+0x1f7/0x5170 drivers/usb/core/config.c:887 usb_enumerate_device drivers/usb/core/hub.c:2407 [inline] usb_new_device+0x12b0/0x19d0 drivers/usb/core/hub.c:2545 As analyzed by Khazhy Kumykov, the cause of this bug is a race between read_descriptors() and hub_port_init(): The first routine uses a field in udev->descriptor, not expecting it to change, while the second overwrites it. Prior to commit 45bf39f8df7f ("USB: core: Don't hold device lock while reading the "descriptors" sysfs file") this race couldn't occur, because the routines were mutually exclusive thanks to the device locking. Removing that locking from read_descriptors() exposed it to the race. The best way to fix the bug is to keep hub_port_init() from changing udev->descriptor once udev has been initialized and registered. Drivers expect the descriptors stored in the kernel to be immutable; we should not undermine this expectation. In fact, this change should have been made long ago. So now hub_port_init() will take an additional argument, specifying a buffer in which to store the device descriptor it reads. (If udev has not yet been initialized, the buffer pointer will be NULL and then hub_port_init() will store the device descriptor in udev as before.) This eliminates the data race responsible for the out-of-bounds read. The changes to hub_port_init() appear more extensive than they really are, because of indentation changes resulting from an attempt to avoid writing to other parts of the usb_device structure after it has been initialized. Similar changes should be made to the code that reads the BOS descriptor, but that can be handled in a separate patch later on. This patch is sufficient to fix the bug found by syzbot.
CVE-2023-52885 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix UAF in svc_tcp_listen_data_ready() After the listener svc_sock is freed, and before invoking svc_tcp_accept() for the established child sock, there is a window that the newsock retaining a freed listener svc_sock in sk_user_data which cloning from parent. In the race window, if data is received on the newsock, we will observe use-after-free report in svc_tcp_listen_data_ready(). Reproduce by two tasks: 1. while :; do rpc.nfsd 0 ; rpc.nfsd; done 2. while :; do echo "" | ncat -4 127.0.0.1 2049 ; done KASAN report: ================================================================== BUG: KASAN: slab-use-after-free in svc_tcp_listen_data_ready+0x1cf/0x1f0 [sunrpc] Read of size 8 at addr ffff888139d96228 by task nc/102553 CPU: 7 PID: 102553 Comm: nc Not tainted 6.3.0+ #18 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Call Trace: <IRQ> dump_stack_lvl+0x33/0x50 print_address_description.constprop.0+0x27/0x310 print_report+0x3e/0x70 kasan_report+0xae/0xe0 svc_tcp_listen_data_ready+0x1cf/0x1f0 [sunrpc] tcp_data_queue+0x9f4/0x20e0 tcp_rcv_established+0x666/0x1f60 tcp_v4_do_rcv+0x51c/0x850 tcp_v4_rcv+0x23fc/0x2e80 ip_protocol_deliver_rcu+0x62/0x300 ip_local_deliver_finish+0x267/0x350 ip_local_deliver+0x18b/0x2d0 ip_rcv+0x2fb/0x370 __netif_receive_skb_one_core+0x166/0x1b0 process_backlog+0x24c/0x5e0 __napi_poll+0xa2/0x500 net_rx_action+0x854/0xc90 __do_softirq+0x1bb/0x5de do_softirq+0xcb/0x100 </IRQ> <TASK> ... </TASK> Allocated by task 102371: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0x7b/0x90 svc_setup_socket+0x52/0x4f0 [sunrpc] svc_addsock+0x20d/0x400 [sunrpc] __write_ports_addfd+0x209/0x390 [nfsd] write_ports+0x239/0x2c0 [nfsd] nfsctl_transaction_write+0xac/0x110 [nfsd] vfs_write+0x1c3/0xae0 ksys_write+0xed/0x1c0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc Freed by task 102551: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x50 __kasan_slab_free+0x106/0x190 __kmem_cache_free+0x133/0x270 svc_xprt_free+0x1e2/0x350 [sunrpc] svc_xprt_destroy_all+0x25a/0x440 [sunrpc] nfsd_put+0x125/0x240 [nfsd] nfsd_svc+0x2cb/0x3c0 [nfsd] write_threads+0x1ac/0x2a0 [nfsd] nfsctl_transaction_write+0xac/0x110 [nfsd] vfs_write+0x1c3/0xae0 ksys_write+0xed/0x1c0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc Fix the UAF by simply doing nothing in svc_tcp_listen_data_ready() if state != TCP_LISTEN, that will avoid dereferencing svsk for all child socket.
CVE-2023-52827 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix possible out-of-bound read in ath12k_htt_pull_ppdu_stats() len is extracted from HTT message and could be an unexpected value in case errors happen, so add validation before using to avoid possible out-of-bound read in the following message iteration and parsing. The same issue also applies to ppdu_info->ppdu_stats.common.num_users, so validate it before using too. These are found during code review. Compile test only.
CVE-2023-52821 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/panel: fix a possible null pointer dereference In versatile_panel_get_modes(), the return value of drm_mode_duplicate() is assigned to mode, which will lead to a NULL pointer dereference on failure of drm_mode_duplicate(). Add a check to avoid npd.
CVE-2023-52815 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/vkms: fix a possible null pointer dereference In amdgpu_vkms_conn_get_modes(), the return value of drm_cvt_mode() is assigned to mode, which will lead to a NULL pointer dereference on failure of drm_cvt_mode(). Add a check to avoid null pointer dereference.
CVE-2023-52809 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: scsi: libfc: Fix potential NULL pointer dereference in fc_lport_ptp_setup() fc_lport_ptp_setup() did not check the return value of fc_rport_create() which can return NULL and would cause a NULL pointer dereference. Address this issue by checking return value of fc_rport_create() and log error message on fc_rport_create() failed.
CVE-2023-52806 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: Fix possible null-ptr-deref when assigning a stream While AudioDSP drivers assign streams exclusively of HOST or LINK type, nothing blocks a user to attempt to assign a COUPLED stream. As supplied substream instance may be a stub, what is the case when code-loading, such scenario ends with null-ptr-deref.
CVE-2023-52783 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: wangxun: fix kernel panic due to null pointer When the device uses a custom subsystem vendor ID, the function wx_sw_init() returns before the memory of 'wx->mac_table' is allocated. The null pointer will causes the kernel panic.
CVE-2023-52773 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix a NULL pointer dereference in amdgpu_dm_i2c_xfer() When ddc_service_construct() is called, it explicitly checks both the link type and whether there is something on the link which will dictate whether the pin is marked as hw_supported. If the pin isn't set or the link is not set (such as from unloading/reloading amdgpu in an IGT test) then fail the amdgpu_dm_i2c_xfer() call.
CVE-2023-52772 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: af_unix: fix use-after-free in unix_stream_read_actor() syzbot reported the following crash [1] After releasing unix socket lock, u->oob_skb can be changed by another thread. We must temporarily increase skb refcount to make sure this other thread will not free the skb under us. [1] BUG: KASAN: slab-use-after-free in unix_stream_read_actor+0xa7/0xc0 net/unix/af_unix.c:2866 Read of size 4 at addr ffff88801f3b9cc4 by task syz-executor107/5297 CPU: 1 PID: 5297 Comm: syz-executor107 Not tainted 6.6.0-syzkaller-15910-gb8e3a87a627b #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xd9/0x1b0 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:364 [inline] print_report+0xc4/0x620 mm/kasan/report.c:475 kasan_report+0xda/0x110 mm/kasan/report.c:588 unix_stream_read_actor+0xa7/0xc0 net/unix/af_unix.c:2866 unix_stream_recv_urg net/unix/af_unix.c:2587 [inline] unix_stream_read_generic+0x19a5/0x2480 net/unix/af_unix.c:2666 unix_stream_recvmsg+0x189/0x1b0 net/unix/af_unix.c:2903 sock_recvmsg_nosec net/socket.c:1044 [inline] sock_recvmsg+0xe2/0x170 net/socket.c:1066 ____sys_recvmsg+0x21f/0x5c0 net/socket.c:2803 ___sys_recvmsg+0x115/0x1a0 net/socket.c:2845 __sys_recvmsg+0x114/0x1e0 net/socket.c:2875 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b RIP: 0033:0x7fc67492c559 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fc6748ab228 EFLAGS: 00000246 ORIG_RAX: 000000000000002f RAX: ffffffffffffffda RBX: 000000000000001c RCX: 00007fc67492c559 RDX: 0000000040010083 RSI: 0000000020000140 RDI: 0000000000000004 RBP: 00007fc6749b6348 R08: 00007fc6748ab6c0 R09: 00007fc6748ab6c0 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fc6749b6340 R13: 00007fc6749b634c R14: 00007ffe9fac52a0 R15: 00007ffe9fac5388 </TASK> Allocated by task 5295: kasan_save_stack+0x33/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 __kasan_slab_alloc+0x81/0x90 mm/kasan/common.c:328 kasan_slab_alloc include/linux/kasan.h:188 [inline] slab_post_alloc_hook mm/slab.h:763 [inline] slab_alloc_node mm/slub.c:3478 [inline] kmem_cache_alloc_node+0x180/0x3c0 mm/slub.c:3523 __alloc_skb+0x287/0x330 net/core/skbuff.c:641 alloc_skb include/linux/skbuff.h:1286 [inline] alloc_skb_with_frags+0xe4/0x710 net/core/skbuff.c:6331 sock_alloc_send_pskb+0x7e4/0x970 net/core/sock.c:2780 sock_alloc_send_skb include/net/sock.h:1884 [inline] queue_oob net/unix/af_unix.c:2147 [inline] unix_stream_sendmsg+0xb5f/0x10a0 net/unix/af_unix.c:2301 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0xd5/0x180 net/socket.c:745 ____sys_sendmsg+0x6ac/0x940 net/socket.c:2584 ___sys_sendmsg+0x135/0x1d0 net/socket.c:2638 __sys_sendmsg+0x117/0x1e0 net/socket.c:2667 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b Freed by task 5295: kasan_save_stack+0x33/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 kasan_save_free_info+0x2b/0x40 mm/kasan/generic.c:522 ____kasan_slab_free mm/kasan/common.c:236 [inline] ____kasan_slab_free+0x15b/0x1b0 mm/kasan/common.c:200 kasan_slab_free include/linux/kasan.h:164 [inline] slab_free_hook mm/slub.c:1800 [inline] slab_free_freelist_hook+0x114/0x1e0 mm/slub.c:1826 slab_free mm/slub.c:3809 [inline] kmem_cache_free+0xf8/0x340 mm/slub.c:3831 kfree_skbmem+0xef/0x1b0 net/core/skbuff.c:1015 __kfree_skb net/core/skbuff.c:1073 [inline] consume_skb net/core/skbuff.c:1288 [inline] consume_skb+0xdf/0x170 net/core/skbuff.c:1282 queue_oob net/unix/af_unix.c:2178 [inline] u ---truncated---
CVE-2023-52769 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix htt mlo-offset event locking The ath12k active pdevs are protected by RCU but the htt mlo-offset event handling code calling ath12k_mac_get_ar_by_pdev_id() was not marked as a read-side critical section. Mark the code in question as an RCU read-side critical section to avoid any potential use-after-free issues. Compile tested only.
CVE-2023-52753 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid NULL dereference of timing generator [Why & How] Check whether assigned timing generator is NULL or not before accessing its funcs to prevent NULL dereference.
CVE-2023-52645 1 Linux 1 Linux Kernel 2024-11-21 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: pmdomain: mediatek: fix race conditions with genpd If the power domains are registered first with genpd and *after that* the driver attempts to power them on in the probe sequence, then it is possible that a race condition occurs if genpd tries to power them on in the same time. The same is valid for powering them off before unregistering them from genpd. Attempt to fix race conditions by first removing the domains from genpd and *after that* powering down domains. Also first power up the domains and *after that* register them to genpd.
CVE-2023-52474 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: IB/hfi1: Fix bugs with non-PAGE_SIZE-end multi-iovec user SDMA requests hfi1 user SDMA request processing has two bugs that can cause data corruption for user SDMA requests that have multiple payload iovecs where an iovec other than the tail iovec does not run up to the page boundary for the buffer pointed to by that iovec.a Here are the specific bugs: 1. user_sdma_txadd() does not use struct user_sdma_iovec->iov.iov_len. Rather, user_sdma_txadd() will add up to PAGE_SIZE bytes from iovec to the packet, even if some of those bytes are past iovec->iov.iov_len and are thus not intended to be in the packet. 2. user_sdma_txadd() and user_sdma_send_pkts() fail to advance to the next iovec in user_sdma_request->iovs when the current iovec is not PAGE_SIZE and does not contain enough data to complete the packet. The transmitted packet will contain the wrong data from the iovec pages. This has not been an issue with SDMA packets from hfi1 Verbs or PSM2 because they only produce iovecs that end short of PAGE_SIZE as the tail iovec of an SDMA request. Fixing these bugs exposes other bugs with the SDMA pin cache (struct mmu_rb_handler) that get in way of supporting user SDMA requests with multiple payload iovecs whose buffers do not end at PAGE_SIZE. So this commit fixes those issues as well. Here are the mmu_rb_handler bugs that non-PAGE_SIZE-end multi-iovec payload user SDMA requests can hit: 1. Overlapping memory ranges in mmu_rb_handler will result in duplicate pinnings. 2. When extending an existing mmu_rb_handler entry (struct mmu_rb_node), the mmu_rb code (1) removes the existing entry under a lock, (2) releases that lock, pins the new pages, (3) then reacquires the lock to insert the extended mmu_rb_node. If someone else comes in and inserts an overlapping entry between (2) and (3), insert in (3) will fail. The failure path code in this case unpins _all_ pages in either the original mmu_rb_node or the new mmu_rb_node that was inserted between (2) and (3). 3. In hfi1_mmu_rb_remove_unless_exact(), mmu_rb_node->refcount is incremented outside of mmu_rb_handler->lock. As a result, mmu_rb_node could be evicted by another thread that gets mmu_rb_handler->lock and checks mmu_rb_node->refcount before mmu_rb_node->refcount is incremented. 4. Related to #2 above, SDMA request submission failure path does not check mmu_rb_node->refcount before freeing mmu_rb_node object. If there are other SDMA requests in progress whose iovecs have pointers to the now-freed mmu_rb_node(s), those pointers to the now-freed mmu_rb nodes will be dereferenced when those SDMA requests complete.
CVE-2023-52473 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: thermal: core: Fix NULL pointer dereference in zone registration error path If device_register() in thermal_zone_device_register_with_trips() returns an error, the tz variable is set to NULL and subsequently dereferenced in kfree(tz->tzp). Commit adc8749b150c ("thermal/drivers/core: Use put_device() if device_register() fails") added the tz = NULL assignment in question to avoid a possible double-free after dropping the reference to the zone device. However, after commit 4649620d9404 ("thermal: core: Make thermal_zone_device_unregister() return after freeing the zone"), that assignment has become redundant, because dropping the reference to the zone device does not cause the zone object to be freed any more. Drop it to address the NULL pointer dereference.
CVE-2023-52472 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: crypto: rsa - add a check for allocation failure Static checkers insist that the mpi_alloc() allocation can fail so add a check to prevent a NULL dereference. Small allocations like this can't actually fail in current kernels, but adding a check is very simple and makes the static checkers happy.
CVE-2023-52471 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ice: Fix some null pointer dereference issues in ice_ptp.c devm_kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure.
CVE-2023-52470 1 Linux 1 Linux Kernel 2024-11-21 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: check the alloc_workqueue return value in radeon_crtc_init() check the alloc_workqueue return value in radeon_crtc_init() to avoid null-ptr-deref.