Total
10273 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2023-6531 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2024-11-21 | N/A | 7.0 HIGH |
A use-after-free flaw was found in the Linux Kernel due to a race problem in the unix garbage collector's deletion of SKB races with unix_stream_read_generic() on the socket that the SKB is queued on. | |||||
CVE-2023-6356 | 3 Debian, Linux, Redhat | 17 Debian Linux, Linux Kernel, Codeready Linux Builder Eus and 14 more | 2024-11-21 | N/A | 6.5 MEDIUM |
A flaw was found in the Linux kernel's NVMe driver. This issue may allow an unauthenticated malicious actor to send a set of crafted TCP packages when using NVMe over TCP, leading the NVMe driver to a NULL pointer dereference in the NVMe driver and causing kernel panic and a denial of service. | |||||
CVE-2023-6240 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2024-11-21 | N/A | 6.5 MEDIUM |
A Marvin vulnerability side-channel leakage was found in the RSA decryption operation in the Linux Kernel. This issue may allow a network attacker to decrypt ciphertexts or forge signatures, limiting the services that use that private key. | |||||
CVE-2023-6238 | 2 Fedoraproject, Linux | 2 Fedora, Linux Kernel | 2024-11-21 | N/A | 6.7 MEDIUM |
A buffer overflow vulnerability was found in the NVM Express (NVMe) driver in the Linux kernel. Only privileged user could specify a small meta buffer and let the device perform larger Direct Memory Access (DMA) into the same buffer, overwriting unrelated kernel memory, causing random kernel crashes and memory corruption. | |||||
CVE-2023-6176 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2024-11-21 | N/A | 4.7 MEDIUM |
A null pointer dereference flaw was found in the Linux kernel API for the cryptographic algorithm scatterwalk functionality. This issue occurs when a user constructs a malicious packet with specific socket configuration, which could allow a local user to crash the system or escalate their privileges on the system. | |||||
CVE-2023-6039 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
A use-after-free flaw was found in lan78xx_disconnect in drivers/net/usb/lan78xx.c in the network sub-component, net/usb/lan78xx in the Linux Kernel. This flaw allows a local attacker to crash the system when the LAN78XX USB device detaches. | |||||
CVE-2023-5972 | 2 Fedoraproject, Linux | 2 Fedora, Linux Kernel | 2024-11-21 | N/A | 7.0 HIGH |
A null pointer dereference flaw was found in the nft_inner.c functionality of netfilter in the Linux kernel. This issue could allow a local user to crash the system or escalate their privileges on the system. | |||||
CVE-2023-5847 | 3 Linux, Microsoft, Tenable | 4 Linux Kernel, Windows, Nessus and 1 more | 2024-11-21 | N/A | 6.7 MEDIUM |
Under certain conditions, a low privileged attacker could load a specially crafted file during installation or upgrade to escalate privileges on Windows and Linux hosts. | |||||
CVE-2023-5633 | 2 Linux, Redhat | 22 Linux Kernel, Codeready Linux Builder, Codeready Linux Builder Eus and 19 more | 2024-11-21 | N/A | 7.8 HIGH |
The reference count changes made as part of the CVE-2023-33951 and CVE-2023-33952 fixes exposed a use-after-free flaw in the way memory objects were handled when they were being used to store a surface. When running inside a VMware guest with 3D acceleration enabled, a local, unprivileged user could potentially use this flaw to escalate their privileges. | |||||
CVE-2023-5178 | 3 Linux, Netapp, Redhat | 5 Linux Kernel, Active Iq Unified Manager, Solidfire \& Hci Management Node and 2 more | 2024-11-21 | N/A | 8.8 HIGH |
A use-after-free vulnerability was found in drivers/nvme/target/tcp.c` in `nvmet_tcp_free_crypto` due to a logical bug in the NVMe/TCP subsystem in the Linux kernel. This issue may allow a malicious user to cause a use-after-free and double-free problem, which may permit remote code execution or lead to local privilege escalation. | |||||
CVE-2023-5158 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 6.5 MEDIUM |
A flaw was found in vringh_kiov_advance in drivers/vhost/vringh.c in the host side of a virtio ring in the Linux Kernel. This issue may result in a denial of service from guest to host via zero length descriptor. | |||||
CVE-2023-5090 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2024-11-21 | N/A | 6.0 MEDIUM |
A flaw was found in KVM. An improper check in svm_set_x2apic_msr_interception() may allow direct access to host x2apic msrs when the guest resets its apic, potentially leading to a denial of service condition. | |||||
CVE-2023-52886 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 6.4 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix race by not overwriting udev->descriptor in hub_port_init() Syzbot reported an out-of-bounds read in sysfs.c:read_descriptors(): BUG: KASAN: slab-out-of-bounds in read_descriptors+0x263/0x280 drivers/usb/core/sysfs.c:883 Read of size 8 at addr ffff88801e78b8c8 by task udevd/5011 CPU: 0 PID: 5011 Comm: udevd Not tainted 6.4.0-rc6-syzkaller-00195-g40f71e7cd3c6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xd9/0x150 lib/dump_stack.c:106 print_address_description.constprop.0+0x2c/0x3c0 mm/kasan/report.c:351 print_report mm/kasan/report.c:462 [inline] kasan_report+0x11c/0x130 mm/kasan/report.c:572 read_descriptors+0x263/0x280 drivers/usb/core/sysfs.c:883 ... Allocated by task 758: ... __do_kmalloc_node mm/slab_common.c:966 [inline] __kmalloc+0x5e/0x190 mm/slab_common.c:979 kmalloc include/linux/slab.h:563 [inline] kzalloc include/linux/slab.h:680 [inline] usb_get_configuration+0x1f7/0x5170 drivers/usb/core/config.c:887 usb_enumerate_device drivers/usb/core/hub.c:2407 [inline] usb_new_device+0x12b0/0x19d0 drivers/usb/core/hub.c:2545 As analyzed by Khazhy Kumykov, the cause of this bug is a race between read_descriptors() and hub_port_init(): The first routine uses a field in udev->descriptor, not expecting it to change, while the second overwrites it. Prior to commit 45bf39f8df7f ("USB: core: Don't hold device lock while reading the "descriptors" sysfs file") this race couldn't occur, because the routines were mutually exclusive thanks to the device locking. Removing that locking from read_descriptors() exposed it to the race. The best way to fix the bug is to keep hub_port_init() from changing udev->descriptor once udev has been initialized and registered. Drivers expect the descriptors stored in the kernel to be immutable; we should not undermine this expectation. In fact, this change should have been made long ago. So now hub_port_init() will take an additional argument, specifying a buffer in which to store the device descriptor it reads. (If udev has not yet been initialized, the buffer pointer will be NULL and then hub_port_init() will store the device descriptor in udev as before.) This eliminates the data race responsible for the out-of-bounds read. The changes to hub_port_init() appear more extensive than they really are, because of indentation changes resulting from an attempt to avoid writing to other parts of the usb_device structure after it has been initialized. Similar changes should be made to the code that reads the BOS descriptor, but that can be handled in a separate patch later on. This patch is sufficient to fix the bug found by syzbot. | |||||
CVE-2023-52885 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix UAF in svc_tcp_listen_data_ready() After the listener svc_sock is freed, and before invoking svc_tcp_accept() for the established child sock, there is a window that the newsock retaining a freed listener svc_sock in sk_user_data which cloning from parent. In the race window, if data is received on the newsock, we will observe use-after-free report in svc_tcp_listen_data_ready(). Reproduce by two tasks: 1. while :; do rpc.nfsd 0 ; rpc.nfsd; done 2. while :; do echo "" | ncat -4 127.0.0.1 2049 ; done KASAN report: ================================================================== BUG: KASAN: slab-use-after-free in svc_tcp_listen_data_ready+0x1cf/0x1f0 [sunrpc] Read of size 8 at addr ffff888139d96228 by task nc/102553 CPU: 7 PID: 102553 Comm: nc Not tainted 6.3.0+ #18 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Call Trace: <IRQ> dump_stack_lvl+0x33/0x50 print_address_description.constprop.0+0x27/0x310 print_report+0x3e/0x70 kasan_report+0xae/0xe0 svc_tcp_listen_data_ready+0x1cf/0x1f0 [sunrpc] tcp_data_queue+0x9f4/0x20e0 tcp_rcv_established+0x666/0x1f60 tcp_v4_do_rcv+0x51c/0x850 tcp_v4_rcv+0x23fc/0x2e80 ip_protocol_deliver_rcu+0x62/0x300 ip_local_deliver_finish+0x267/0x350 ip_local_deliver+0x18b/0x2d0 ip_rcv+0x2fb/0x370 __netif_receive_skb_one_core+0x166/0x1b0 process_backlog+0x24c/0x5e0 __napi_poll+0xa2/0x500 net_rx_action+0x854/0xc90 __do_softirq+0x1bb/0x5de do_softirq+0xcb/0x100 </IRQ> <TASK> ... </TASK> Allocated by task 102371: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0x7b/0x90 svc_setup_socket+0x52/0x4f0 [sunrpc] svc_addsock+0x20d/0x400 [sunrpc] __write_ports_addfd+0x209/0x390 [nfsd] write_ports+0x239/0x2c0 [nfsd] nfsctl_transaction_write+0xac/0x110 [nfsd] vfs_write+0x1c3/0xae0 ksys_write+0xed/0x1c0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc Freed by task 102551: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x50 __kasan_slab_free+0x106/0x190 __kmem_cache_free+0x133/0x270 svc_xprt_free+0x1e2/0x350 [sunrpc] svc_xprt_destroy_all+0x25a/0x440 [sunrpc] nfsd_put+0x125/0x240 [nfsd] nfsd_svc+0x2cb/0x3c0 [nfsd] write_threads+0x1ac/0x2a0 [nfsd] nfsctl_transaction_write+0xac/0x110 [nfsd] vfs_write+0x1c3/0xae0 ksys_write+0xed/0x1c0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc Fix the UAF by simply doing nothing in svc_tcp_listen_data_ready() if state != TCP_LISTEN, that will avoid dereferencing svsk for all child socket. | |||||
CVE-2023-52827 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.1 HIGH |
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix possible out-of-bound read in ath12k_htt_pull_ppdu_stats() len is extracted from HTT message and could be an unexpected value in case errors happen, so add validation before using to avoid possible out-of-bound read in the following message iteration and parsing. The same issue also applies to ppdu_info->ppdu_stats.common.num_users, so validate it before using too. These are found during code review. Compile test only. | |||||
CVE-2023-52821 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/panel: fix a possible null pointer dereference In versatile_panel_get_modes(), the return value of drm_mode_duplicate() is assigned to mode, which will lead to a NULL pointer dereference on failure of drm_mode_duplicate(). Add a check to avoid npd. | |||||
CVE-2023-52817 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix a null pointer access when the smc_rreg pointer is NULL In certain types of chips, such as VEGA20, reading the amdgpu_regs_smc file could result in an abnormal null pointer access when the smc_rreg pointer is NULL. Below are the steps to reproduce this issue and the corresponding exception log: 1. Navigate to the directory: /sys/kernel/debug/dri/0 2. Execute command: cat amdgpu_regs_smc 3. Exception Log:: [4005007.702554] BUG: kernel NULL pointer dereference, address: 0000000000000000 [4005007.702562] #PF: supervisor instruction fetch in kernel mode [4005007.702567] #PF: error_code(0x0010) - not-present page [4005007.702570] PGD 0 P4D 0 [4005007.702576] Oops: 0010 [#1] SMP NOPTI [4005007.702581] CPU: 4 PID: 62563 Comm: cat Tainted: G OE 5.15.0-43-generic #46-Ubunt u [4005007.702590] RIP: 0010:0x0 [4005007.702598] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6. [4005007.702600] RSP: 0018:ffffa82b46d27da0 EFLAGS: 00010206 [4005007.702605] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffa82b46d27e68 [4005007.702609] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9940656e0000 [4005007.702612] RBP: ffffa82b46d27dd8 R08: 0000000000000000 R09: ffff994060c07980 [4005007.702615] R10: 0000000000020000 R11: 0000000000000000 R12: 00007f5e06753000 [4005007.702618] R13: ffff9940656e0000 R14: ffffa82b46d27e68 R15: 00007f5e06753000 [4005007.702622] FS: 00007f5e0755b740(0000) GS:ffff99479d300000(0000) knlGS:0000000000000000 [4005007.702626] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [4005007.702629] CR2: ffffffffffffffd6 CR3: 00000003253fc000 CR4: 00000000003506e0 [4005007.702633] Call Trace: [4005007.702636] <TASK> [4005007.702640] amdgpu_debugfs_regs_smc_read+0xb0/0x120 [amdgpu] [4005007.703002] full_proxy_read+0x5c/0x80 [4005007.703011] vfs_read+0x9f/0x1a0 [4005007.703019] ksys_read+0x67/0xe0 [4005007.703023] __x64_sys_read+0x19/0x20 [4005007.703028] do_syscall_64+0x5c/0xc0 [4005007.703034] ? do_user_addr_fault+0x1e3/0x670 [4005007.703040] ? exit_to_user_mode_prepare+0x37/0xb0 [4005007.703047] ? irqentry_exit_to_user_mode+0x9/0x20 [4005007.703052] ? irqentry_exit+0x19/0x30 [4005007.703057] ? exc_page_fault+0x89/0x160 [4005007.703062] ? asm_exc_page_fault+0x8/0x30 [4005007.703068] entry_SYSCALL_64_after_hwframe+0x44/0xae [4005007.703075] RIP: 0033:0x7f5e07672992 [4005007.703079] Code: c0 e9 b2 fe ff ff 50 48 8d 3d fa b2 0c 00 e8 c5 1d 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 e c 28 48 89 54 24 [4005007.703083] RSP: 002b:00007ffe03097898 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 [4005007.703088] RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f5e07672992 [4005007.703091] RDX: 0000000000020000 RSI: 00007f5e06753000 RDI: 0000000000000003 [4005007.703094] RBP: 00007f5e06753000 R08: 00007f5e06752010 R09: 00007f5e06752010 [4005007.703096] R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000022000 [4005007.703099] R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000 [4005007.703105] </TASK> [4005007.703107] Modules linked in: nf_tables libcrc32c nfnetlink algif_hash af_alg binfmt_misc nls_ iso8859_1 ipmi_ssif ast intel_rapl_msr intel_rapl_common drm_vram_helper drm_ttm_helper amd64_edac t tm edac_mce_amd kvm_amd ccp mac_hid k10temp kvm acpi_ipmi ipmi_si rapl sch_fq_codel ipmi_devintf ipm i_msghandler msr parport_pc ppdev lp parport mtd pstore_blk efi_pstore ramoops pstore_zone reed_solo mon ip_tables x_tables autofs4 ib_uverbs ib_core amdgpu(OE) amddrm_ttm_helper(OE) amdttm(OE) iommu_v 2 amd_sched(OE) amdkcl(OE) drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops cec rc_core drm igb ahci xhci_pci libahci i2c_piix4 i2c_algo_bit xhci_pci_renesas dca [4005007.703184] CR2: 0000000000000000 [4005007.703188] ---[ en ---truncated--- | |||||
CVE-2023-52815 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu/vkms: fix a possible null pointer dereference In amdgpu_vkms_conn_get_modes(), the return value of drm_cvt_mode() is assigned to mode, which will lead to a NULL pointer dereference on failure of drm_cvt_mode(). Add a check to avoid null pointer dereference. | |||||
CVE-2023-52809 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: scsi: libfc: Fix potential NULL pointer dereference in fc_lport_ptp_setup() fc_lport_ptp_setup() did not check the return value of fc_rport_create() which can return NULL and would cause a NULL pointer dereference. Address this issue by checking return value of fc_rport_create() and log error message on fc_rport_create() failed. | |||||
CVE-2023-52806 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: Fix possible null-ptr-deref when assigning a stream While AudioDSP drivers assign streams exclusively of HOST or LINK type, nothing blocks a user to attempt to assign a COUPLED stream. As supplied substream instance may be a stub, what is the case when code-loading, such scenario ends with null-ptr-deref. |