Vulnerabilities (CVE)

Filtered by CWE-416
Total 5381 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2019-8526 1 Apple 1 Mac Os X 2025-02-28 7.2 HIGH 7.8 HIGH
A use after free issue was addressed with improved memory management. This issue is fixed in macOS Mojave 10.14.4. An application may be able to gain elevated privileges.
CVE-2021-3929 2 Fedoraproject, Qemu 2 Fedora, Qemu 2025-02-28 N/A 8.2 HIGH
A DMA reentrancy issue was found in the NVM Express Controller (NVME) emulation in QEMU. This CVE is similar to CVE-2021-3750 and, just like it, when the reentrancy write triggers the reset function nvme_ctrl_reset(), data structs will be freed leading to a use-after-free issue. A malicious guest could use this flaw to crash the QEMU process on the host, resulting in a denial of service condition or, potentially, executing arbitrary code within the context of the QEMU process on the host.
CVE-2024-30330 2025-02-27 N/A 7.8 HIGH
Foxit PDF Reader AcroForm Use-After-Free Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Foxit PDF Reader. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the handling of Doc objects in AcroForms. The issue results from the lack of validating the existence of an object prior to performing operations on the object. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-22636.
CVE-2024-26724 1 Linux 1 Linux Kernel 2025-02-27 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: DPLL, Fix possible use after free after delayed work timer triggers I managed to hit following use after free warning recently: [ 2169.711665] ================================================================== [ 2169.714009] BUG: KASAN: slab-use-after-free in __run_timers.part.0+0x179/0x4c0 [ 2169.716293] Write of size 8 at addr ffff88812b326a70 by task swapper/4/0 [ 2169.719022] CPU: 4 PID: 0 Comm: swapper/4 Not tainted 6.8.0-rc2jiri+ #2 [ 2169.720974] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 2169.722457] Call Trace: [ 2169.722756] <IRQ> [ 2169.723024] dump_stack_lvl+0x58/0xb0 [ 2169.723417] print_report+0xc5/0x630 [ 2169.723807] ? __virt_addr_valid+0x126/0x2b0 [ 2169.724268] kasan_report+0xbe/0xf0 [ 2169.724667] ? __run_timers.part.0+0x179/0x4c0 [ 2169.725116] ? __run_timers.part.0+0x179/0x4c0 [ 2169.725570] __run_timers.part.0+0x179/0x4c0 [ 2169.726003] ? call_timer_fn+0x320/0x320 [ 2169.726404] ? lock_downgrade+0x3a0/0x3a0 [ 2169.726820] ? kvm_clock_get_cycles+0x14/0x20 [ 2169.727257] ? ktime_get+0x92/0x150 [ 2169.727630] ? lapic_next_deadline+0x35/0x60 [ 2169.728069] run_timer_softirq+0x40/0x80 [ 2169.728475] __do_softirq+0x1a1/0x509 [ 2169.728866] irq_exit_rcu+0x95/0xc0 [ 2169.729241] sysvec_apic_timer_interrupt+0x6b/0x80 [ 2169.729718] </IRQ> [ 2169.729993] <TASK> [ 2169.730259] asm_sysvec_apic_timer_interrupt+0x16/0x20 [ 2169.730755] RIP: 0010:default_idle+0x13/0x20 [ 2169.731190] Code: c0 08 00 00 00 4d 29 c8 4c 01 c7 4c 29 c2 e9 72 ff ff ff cc cc cc cc 8b 05 9a 7f 1f 02 85 c0 7e 07 0f 00 2d cf 69 43 00 fb f4 <fa> c3 66 66 2e 0f 1f 84 00 00 00 00 00 65 48 8b 04 25 c0 93 04 00 [ 2169.732759] RSP: 0018:ffff888100dbfe10 EFLAGS: 00000242 [ 2169.733264] RAX: 0000000000000001 RBX: ffff888100d9c200 RCX: ffffffff8241bd62 [ 2169.733925] RDX: ffffed109a848b15 RSI: 0000000000000004 RDI: ffffffff8127ac55 [ 2169.734566] RBP: 0000000000000004 R08: 0000000000000000 R09: ffffed109a848b14 [ 2169.735200] R10: ffff8884d42458a3 R11: 000000000000ba7e R12: ffffffff83d7d3a0 [ 2169.735835] R13: 1ffff110201b7fc6 R14: 0000000000000000 R15: ffff888100d9c200 [ 2169.736478] ? ct_kernel_exit.constprop.0+0xa2/0xc0 [ 2169.736954] ? do_idle+0x285/0x290 [ 2169.737323] default_idle_call+0x63/0x90 [ 2169.737730] do_idle+0x285/0x290 [ 2169.738089] ? arch_cpu_idle_exit+0x30/0x30 [ 2169.738511] ? mark_held_locks+0x1a/0x80 [ 2169.738917] ? lockdep_hardirqs_on_prepare+0x12e/0x200 [ 2169.739417] cpu_startup_entry+0x30/0x40 [ 2169.739825] start_secondary+0x19a/0x1c0 [ 2169.740229] ? set_cpu_sibling_map+0xbd0/0xbd0 [ 2169.740673] secondary_startup_64_no_verify+0x15d/0x16b [ 2169.741179] </TASK> [ 2169.741686] Allocated by task 1098: [ 2169.742058] kasan_save_stack+0x1c/0x40 [ 2169.742456] kasan_save_track+0x10/0x30 [ 2169.742852] __kasan_kmalloc+0x83/0x90 [ 2169.743246] mlx5_dpll_probe+0xf5/0x3c0 [mlx5_dpll] [ 2169.743730] auxiliary_bus_probe+0x62/0xb0 [ 2169.744148] really_probe+0x127/0x590 [ 2169.744534] __driver_probe_device+0xd2/0x200 [ 2169.744973] device_driver_attach+0x6b/0xf0 [ 2169.745402] bind_store+0x90/0xe0 [ 2169.745761] kernfs_fop_write_iter+0x1df/0x2a0 [ 2169.746210] vfs_write+0x41f/0x790 [ 2169.746579] ksys_write+0xc7/0x160 [ 2169.746947] do_syscall_64+0x6f/0x140 [ 2169.747333] entry_SYSCALL_64_after_hwframe+0x46/0x4e [ 2169.748049] Freed by task 1220: [ 2169.748393] kasan_save_stack+0x1c/0x40 [ 2169.748789] kasan_save_track+0x10/0x30 [ 2169.749188] kasan_save_free_info+0x3b/0x50 [ 2169.749621] poison_slab_object+0x106/0x180 [ 2169.750044] __kasan_slab_free+0x14/0x50 [ 2169.750451] kfree+0x118/0x330 [ 2169.750792] mlx5_dpll_remove+0xf5/0x110 [mlx5_dpll] [ 2169.751271] auxiliary_bus_remove+0x2e/0x40 [ 2169.751694] device_release_driver_internal+0x24b/0x2e0 [ 2169.752191] unbind_store+0xa6/0xb0 [ 2169.752563] kernfs_fo ---truncated---
CVE-2021-47131 1 Linux 1 Linux Kernel 2025-02-27 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: net/tls: Fix use-after-free after the TLS device goes down and up When a netdev with active TLS offload goes down, tls_device_down is called to stop the offload and tear down the TLS context. However, the socket stays alive, and it still points to the TLS context, which is now deallocated. If a netdev goes up, while the connection is still active, and the data flow resumes after a number of TCP retransmissions, it will lead to a use-after-free of the TLS context. This commit addresses this bug by keeping the context alive until its normal destruction, and implements the necessary fallbacks, so that the connection can resume in software (non-offloaded) kTLS mode. On the TX side tls_sw_fallback is used to encrypt all packets. The RX side already has all the necessary fallbacks, because receiving non-decrypted packets is supported. The thing needed on the RX side is to block resync requests, which are normally produced after receiving non-decrypted packets. The necessary synchronization is implemented for a graceful teardown: first the fallbacks are deployed, then the driver resources are released (it used to be possible to have a tls_dev_resync after tls_dev_del). A new flag called TLS_RX_DEV_DEGRADED is added to indicate the fallback mode. It's used to skip the RX resync logic completely, as it becomes useless, and some objects may be released (for example, resync_async, which is allocated and freed by the driver).
CVE-2021-47118 1 Linux 1 Linux Kernel 2025-02-27 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: pid: take a reference when initializing `cad_pid` During boot, kernel_init_freeable() initializes `cad_pid` to the init task's struct pid. Later on, we may change `cad_pid` via a sysctl, and when this happens proc_do_cad_pid() will increment the refcount on the new pid via get_pid(), and will decrement the refcount on the old pid via put_pid(). As we never called get_pid() when we initialized `cad_pid`, we decrement a reference we never incremented, can therefore free the init task's struct pid early. As there can be dangling references to the struct pid, we can later encounter a use-after-free (e.g. when delivering signals). This was spotted when fuzzing v5.13-rc3 with Syzkaller, but seems to have been around since the conversion of `cad_pid` to struct pid in commit 9ec52099e4b8 ("[PATCH] replace cad_pid by a struct pid") from the pre-KASAN stone age of v2.6.19. Fix this by getting a reference to the init task's struct pid when we assign it to `cad_pid`. Full KASAN splat below. ================================================================== BUG: KASAN: use-after-free in ns_of_pid include/linux/pid.h:153 [inline] BUG: KASAN: use-after-free in task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509 Read of size 4 at addr ffff23794dda0004 by task syz-executor.0/273 CPU: 1 PID: 273 Comm: syz-executor.0 Not tainted 5.12.0-00001-g9aef892b2d15 #1 Hardware name: linux,dummy-virt (DT) Call trace: ns_of_pid include/linux/pid.h:153 [inline] task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509 do_notify_parent+0x308/0xe60 kernel/signal.c:1950 exit_notify kernel/exit.c:682 [inline] do_exit+0x2334/0x2bd0 kernel/exit.c:845 do_group_exit+0x108/0x2c8 kernel/exit.c:922 get_signal+0x4e4/0x2a88 kernel/signal.c:2781 do_signal arch/arm64/kernel/signal.c:882 [inline] do_notify_resume+0x300/0x970 arch/arm64/kernel/signal.c:936 work_pending+0xc/0x2dc Allocated by task 0: slab_post_alloc_hook+0x50/0x5c0 mm/slab.h:516 slab_alloc_node mm/slub.c:2907 [inline] slab_alloc mm/slub.c:2915 [inline] kmem_cache_alloc+0x1f4/0x4c0 mm/slub.c:2920 alloc_pid+0xdc/0xc00 kernel/pid.c:180 copy_process+0x2794/0x5e18 kernel/fork.c:2129 kernel_clone+0x194/0x13c8 kernel/fork.c:2500 kernel_thread+0xd4/0x110 kernel/fork.c:2552 rest_init+0x44/0x4a0 init/main.c:687 arch_call_rest_init+0x1c/0x28 start_kernel+0x520/0x554 init/main.c:1064 0x0 Freed by task 270: slab_free_hook mm/slub.c:1562 [inline] slab_free_freelist_hook+0x98/0x260 mm/slub.c:1600 slab_free mm/slub.c:3161 [inline] kmem_cache_free+0x224/0x8e0 mm/slub.c:3177 put_pid.part.4+0xe0/0x1a8 kernel/pid.c:114 put_pid+0x30/0x48 kernel/pid.c:109 proc_do_cad_pid+0x190/0x1b0 kernel/sysctl.c:1401 proc_sys_call_handler+0x338/0x4b0 fs/proc/proc_sysctl.c:591 proc_sys_write+0x34/0x48 fs/proc/proc_sysctl.c:617 call_write_iter include/linux/fs.h:1977 [inline] new_sync_write+0x3ac/0x510 fs/read_write.c:518 vfs_write fs/read_write.c:605 [inline] vfs_write+0x9c4/0x1018 fs/read_write.c:585 ksys_write+0x124/0x240 fs/read_write.c:658 __do_sys_write fs/read_write.c:670 [inline] __se_sys_write fs/read_write.c:667 [inline] __arm64_sys_write+0x78/0xb0 fs/read_write.c:667 __invoke_syscall arch/arm64/kernel/syscall.c:37 [inline] invoke_syscall arch/arm64/kernel/syscall.c:49 [inline] el0_svc_common.constprop.1+0x16c/0x388 arch/arm64/kernel/syscall.c:129 do_el0_svc+0xf8/0x150 arch/arm64/kernel/syscall.c:168 el0_svc+0x28/0x38 arch/arm64/kernel/entry-common.c:416 el0_sync_handler+0x134/0x180 arch/arm64/kernel/entry-common.c:432 el0_sync+0x154/0x180 arch/arm64/kernel/entry.S:701 The buggy address belongs to the object at ffff23794dda0000 which belongs to the cache pid of size 224 The buggy address is located 4 bytes inside of 224-byte region [ff ---truncated---
CVE-2021-47111 1 Linux 1 Linux Kernel 2025-02-27 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: xen-netback: take a reference to the RX task thread Do this in order to prevent the task from being freed if the thread returns (which can be triggered by the frontend) before the call to kthread_stop done as part of the backend tear down. Not taking the reference will lead to a use-after-free in that scenario. Such reference was taken before but dropped as part of the rework done in 2ac061ce97f4. Reintroduce the reference taking and add a comment this time explaining why it's needed. This is XSA-374 / CVE-2021-28691.
CVE-2023-21018 1 Google 1 Android 2025-02-26 N/A 6.7 MEDIUM
In UnwindingWorker of unwinding.cc, there is a possible out of bounds write due to a use after free. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-13Android ID: A-233338564
CVE-2022-4095 1 Linux 1 Linux Kernel 2025-02-26 N/A 7.8 HIGH
A use-after-free flaw was found in Linux kernel before 5.19.2. This issue occurs in cmd_hdl_filter in drivers/staging/rtl8712/rtl8712_cmd.c, allowing an attacker to launch a local denial of service attack and gain escalation of privileges.
CVE-2025-21392 1 Microsoft 2 365 Apps, Office 2025-02-26 N/A 7.8 HIGH
Microsoft Office Remote Code Execution Vulnerability
CVE-2024-27246 2025-02-25 N/A 4.3 MEDIUM
Use after free in some Zoom Workplace Apps and SDKs may allow an authenticated user to conduct a denial of service via network access.
CVE-2023-21043 1 Google 1 Android 2025-02-25 N/A 6.7 MEDIUM
In (TBD) of (TBD), there is a possible way to corrupt memory due to a use after free. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-239872581References: N/A
CVE-2023-21038 1 Google 1 Android 2025-02-25 N/A 6.7 MEDIUM
In cs40l2x_cp_trigger_queue_show of cs40l2x.c, there is a possible out of bounds write due to a use after free. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-224000736References: N/A
CVE-2023-21045 1 Google 1 Android 2025-02-24 N/A 4.4 MEDIUM
When cpif handles probe failures, there is a possible out of bounds read due to a use after free. This could lead to local information disclosure with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-259323725References: N/A
CVE-2023-0494 3 Fedoraproject, Redhat, X.org 18 Fedora, Enterprise Linux, Enterprise Linux Aus and 15 more 2025-02-24 N/A 7.8 HIGH
A vulnerability was found in X.Org. This issue occurs due to a dangling pointer in DeepCopyPointerClasses that can be exploited by ProcXkbSetDeviceInfo() and ProcXkbGetDeviceInfo() to read and write into freed memory. This can lead to local privilege elevation on systems where the X server runs privileged and remote code execution for ssh X forwarding sessions.
CVE-2021-34486 1 Microsoft 8 Windows 10 1809, Windows 10 1909, Windows 10 2004 and 5 more 2025-02-24 4.6 MEDIUM 7.8 HIGH
Windows Event Tracing Elevation of Privilege Vulnerability
CVE-2023-21020 1 Google 1 Android 2025-02-24 N/A 6.7 MEDIUM
In registerSignalHandlers of main.c, there is a possible local arbitrary code execution due to a use after free. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-13Android ID: A-256591441
CVE-2023-21055 1 Google 1 Android 2025-02-21 N/A 6.4 MEDIUM
In dit_hal_ioctl of dit.c, there is a possible use after free due to a race condition. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-244301523References: N/A
CVE-2024-50061 1 Linux 1 Linux Kernel 2025-02-21 N/A 7.0 HIGH
In the Linux kernel, the following vulnerability has been resolved: i3c: master: cdns: Fix use after free vulnerability in cdns_i3c_master Driver Due to Race Condition In the cdns_i3c_master_probe function, &master->hj_work is bound with cdns_i3c_master_hj. And cdns_i3c_master_interrupt can call cnds_i3c_master_demux_ibis function to start the work. If we remove the module which will call cdns_i3c_master_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | cdns_i3c_master_hj cdns_i3c_master_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in cdns_i3c_master_remove.
CVE-2023-21042 1 Google 1 Android 2025-02-19 N/A 6.7 MEDIUM
In (TBD) of (TBD), there is a possible way to corrupt memory due to a use after free. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android kernelAndroid ID: A-239873326References: N/A