Total
10307 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2024-26829 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: media: ir_toy: fix a memleak in irtoy_tx When irtoy_command fails, buf should be freed since it is allocated by irtoy_tx, or there is a memleak. | |||||
CVE-2024-26774 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid dividing by 0 in mb_update_avg_fragment_size() when block bitmap corrupt Determine if bb_fragments is 0 instead of determining bb_free to eliminate the risk of dividing by zero when the block bitmap is corrupted. | |||||
CVE-2024-26710 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: powerpc/kasan: Limit KASAN thread size increase to 32KB KASAN is seen to increase stack usage, to the point that it was reported to lead to stack overflow on some 32-bit machines (see link). To avoid overflows the stack size was doubled for KASAN builds in commit 3e8635fb2e07 ("powerpc/kasan: Force thread size increase with KASAN"). However with a 32KB stack size to begin with, the doubling leads to a 64KB stack, which causes build errors: arch/powerpc/kernel/switch.S:249: Error: operand out of range (0x000000000000fe50 is not between 0xffffffffffff8000 and 0x0000000000007fff) Although the asm could be reworked, in practice a 32KB stack seems sufficient even for KASAN builds - the additional usage seems to be in the 2-3KB range for a 64-bit KASAN build. So only increase the stack for KASAN if the stack size is < 32KB. | |||||
CVE-2023-52921 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix possible UAF in amdgpu_cs_pass1() Since the gang_size check is outside of chunk parsing loop, we need to reset i before we free the chunk data. Suggested by Ye Zhang (@VAR10CK) of Baidu Security. | |||||
CVE-2023-52760 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix slab-use-after-free in gfs2_qd_dealloc In gfs2_put_super(), whether withdrawn or not, the quota should be cleaned up by gfs2_quota_cleanup(). Otherwise, struct gfs2_sbd will be freed before gfs2_qd_dealloc (rcu callback) has run for all gfs2_quota_data objects, resulting in use-after-free. Also, gfs2_destroy_threads() and gfs2_quota_cleanup() is already called by gfs2_make_fs_ro(), so in gfs2_put_super(), after calling gfs2_make_fs_ro(), there is no need to call them again. | |||||
CVE-2023-52569 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: btrfs: remove BUG() after failure to insert delayed dir index item Instead of calling BUG() when we fail to insert a delayed dir index item into the delayed node's tree, we can just release all the resources we have allocated/acquired before and return the error to the caller. This is fine because all existing call chains undo anything they have done before calling btrfs_insert_delayed_dir_index() or BUG_ON (when creating pending snapshots in the transaction commit path). So remove the BUG() call and do proper error handling. This relates to a syzbot report linked below, but does not fix it because it only prevents hitting a BUG(), it does not fix the issue where somehow we attempt to use twice the same index number for different index items. | |||||
CVE-2022-49412 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: bfq: Avoid merging queues with different parents It can happen that the parent of a bfqq changes between the moment we decide two queues are worth to merge (and set bic->stable_merge_bfqq) and the moment bfq_setup_merge() is called. This can happen e.g. because the process submitted IO for a different cgroup and thus bfqq got reparented. It can even happen that the bfqq we are merging with has parent cgroup that is already offline and going to be destroyed in which case the merge can lead to use-after-free issues such as: BUG: KASAN: use-after-free in __bfq_deactivate_entity+0x9cb/0xa50 Read of size 8 at addr ffff88800693c0c0 by task runc:[2:INIT]/10544 CPU: 0 PID: 10544 Comm: runc:[2:INIT] Tainted: G E 5.15.2-0.g5fb85fd-default #1 openSUSE Tumbleweed (unreleased) f1f3b891c72369aebecd2e43e4641a6358867c70 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0x46/0x5a print_address_description.constprop.0+0x1f/0x140 ? __bfq_deactivate_entity+0x9cb/0xa50 kasan_report.cold+0x7f/0x11b ? __bfq_deactivate_entity+0x9cb/0xa50 __bfq_deactivate_entity+0x9cb/0xa50 ? update_curr+0x32f/0x5d0 bfq_deactivate_entity+0xa0/0x1d0 bfq_del_bfqq_busy+0x28a/0x420 ? resched_curr+0x116/0x1d0 ? bfq_requeue_bfqq+0x70/0x70 ? check_preempt_wakeup+0x52b/0xbc0 __bfq_bfqq_expire+0x1a2/0x270 bfq_bfqq_expire+0xd16/0x2160 ? try_to_wake_up+0x4ee/0x1260 ? bfq_end_wr_async_queues+0xe0/0xe0 ? _raw_write_unlock_bh+0x60/0x60 ? _raw_spin_lock_irq+0x81/0xe0 bfq_idle_slice_timer+0x109/0x280 ? bfq_dispatch_request+0x4870/0x4870 __hrtimer_run_queues+0x37d/0x700 ? enqueue_hrtimer+0x1b0/0x1b0 ? kvm_clock_get_cycles+0xd/0x10 ? ktime_get_update_offsets_now+0x6f/0x280 hrtimer_interrupt+0x2c8/0x740 Fix the problem by checking that the parent of the two bfqqs we are merging in bfq_setup_merge() is the same. | |||||
CVE-2022-49152 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 4.7 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: XArray: Fix xas_create_range() when multi-order entry present If there is already an entry present that is of order >= XA_CHUNK_SHIFT when we call xas_create_range(), xas_create_range() will misinterpret that entry as a node and dereference xa_node->parent, generally leading to a crash that looks something like this: general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 0 PID: 32 Comm: khugepaged Not tainted 5.17.0-rc8-syzkaller-00003-g56e337f2cf13 #0 RIP: 0010:xa_parent_locked include/linux/xarray.h:1207 [inline] RIP: 0010:xas_create_range+0x2d9/0x6e0 lib/xarray.c:725 It's deterministically reproducable once you know what the problem is, but producing it in a live kernel requires khugepaged to hit a race. While the problem has been present since xas_create_range() was introduced, I'm not aware of a way to hit it before the page cache was converted to use multi-index entries. | |||||
CVE-2022-48941 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 4.7 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ice: fix concurrent reset and removal of VFs Commit c503e63200c6 ("ice: Stop processing VF messages during teardown") introduced a driver state flag, ICE_VF_DEINIT_IN_PROGRESS, which is intended to prevent some issues with concurrently handling messages from VFs while tearing down the VFs. This change was motivated by crashes caused while tearing down and bringing up VFs in rapid succession. It turns out that the fix actually introduces issues with the VF driver caused because the PF no longer responds to any messages sent by the VF during its .remove routine. This results in the VF potentially removing its DMA memory before the PF has shut down the device queues. Additionally, the fix doesn't actually resolve concurrency issues within the ice driver. It is possible for a VF to initiate a reset just prior to the ice driver removing VFs. This can result in the remove task concurrently operating while the VF is being reset. This results in similar memory corruption and panics purportedly fixed by that commit. Fix this concurrency at its root by protecting both the reset and removal flows using the existing VF cfg_lock. This ensures that we cannot remove the VF while any outstanding critical tasks such as a virtchnl message or a reset are occurring. This locking change also fixes the root cause originally fixed by commit c503e63200c6 ("ice: Stop processing VF messages during teardown"), so we can simply revert it. Note that I kept these two changes together because simply reverting the original commit alone would leave the driver vulnerable to worse race conditions. | |||||
CVE-2022-48935 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: unregister flowtable hooks on netns exit Unregister flowtable hooks before they are releases via nf_tables_flowtable_destroy() otherwise hook core reports UAF. BUG: KASAN: use-after-free in nf_hook_entries_grow+0x5a7/0x700 net/netfilter/core.c:142 net/netfilter/core.c:142 Read of size 4 at addr ffff8880736f7438 by task syz-executor579/3666 CPU: 0 PID: 3666 Comm: syz-executor579 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] __dump_stack lib/dump_stack.c:88 [inline] lib/dump_stack.c:106 dump_stack_lvl+0x1dc/0x2d8 lib/dump_stack.c:106 lib/dump_stack.c:106 print_address_description+0x65/0x380 mm/kasan/report.c:247 mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] __kasan_report mm/kasan/report.c:433 [inline] mm/kasan/report.c:450 kasan_report+0x19a/0x1f0 mm/kasan/report.c:450 mm/kasan/report.c:450 nf_hook_entries_grow+0x5a7/0x700 net/netfilter/core.c:142 net/netfilter/core.c:142 __nf_register_net_hook+0x27e/0x8d0 net/netfilter/core.c:429 net/netfilter/core.c:429 nf_register_net_hook+0xaa/0x180 net/netfilter/core.c:571 net/netfilter/core.c:571 nft_register_flowtable_net_hooks+0x3c5/0x730 net/netfilter/nf_tables_api.c:7232 net/netfilter/nf_tables_api.c:7232 nf_tables_newflowtable+0x2022/0x2cf0 net/netfilter/nf_tables_api.c:7430 net/netfilter/nf_tables_api.c:7430 nfnetlink_rcv_batch net/netfilter/nfnetlink.c:513 [inline] nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:634 [inline] nfnetlink_rcv_batch net/netfilter/nfnetlink.c:513 [inline] net/netfilter/nfnetlink.c:652 nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:634 [inline] net/netfilter/nfnetlink.c:652 nfnetlink_rcv+0x10e6/0x2550 net/netfilter/nfnetlink.c:652 net/netfilter/nfnetlink.c:652 __nft_release_hook() calls nft_unregister_flowtable_net_hooks() which only unregisters the hooks, then after RCU grace period, it is guaranteed that no packets add new entries to the flowtable (no flow offload rules and flowtable hooks are reachable from packet path), so it is safe to call nf_flow_table_free() which cleans up the remaining entries from the flowtable (both software and hardware) and it unbinds the flow_block. | |||||
CVE-2022-48849 | 1 Linux | 1 Linux Kernel | 2025-06-19 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: bypass tiling flag check in virtual display case (v2) vkms leverages common amdgpu framebuffer creation, and also as it does not support FB modifier, there is no need to check tiling flags when initing framebuffer when virtual display is enabled. This can fix below calltrace: amdgpu 0000:00:08.0: GFX9+ requires FB check based on format modifier WARNING: CPU: 0 PID: 1023 at drivers/gpu/drm/amd/amdgpu/amdgpu_display.c:1150 amdgpu_display_framebuffer_init+0x8e7/0xb40 [amdgpu] v2: check adev->enable_virtual_display instead as vkms can be enabled in bare metal as well. | |||||
CVE-2024-45673 | 3 Ibm, Linux, Microsoft | 5 Security Verify Bridge Directory Sync, Security Verify Gateway For Radius, Security Verify Gateway For Windows Login and 2 more | 2025-06-18 | N/A | 5.5 MEDIUM |
IBM Security Verify Bridge Directory Sync 1.0.1 through 1.0.12, IBM Security Verify Gateway for Windows Login 1.0.1 through 1.0.10, and IBM Security Verify Gateway for Radius 1.0.1 through 1.0.11 stores user credentials in configuration files which can be read by a local user. | |||||
CVE-2024-41744 | 2 Ibm, Linux | 2 Cics Tx, Linux Kernel | 2025-06-18 | N/A | 6.5 MEDIUM |
IBM CICS TX Standard 11.1 is vulnerable to cross-site request forgery which could allow an attacker to execute malicious and unauthorized actions transmitted from a user that the website trusts. | |||||
CVE-2023-34319 | 3 Debian, Linux, Xen | 3 Debian Linux, Linux Kernel, Xen | 2025-06-18 | N/A | 7.8 HIGH |
The fix for XSA-423 added logic to Linux'es netback driver to deal with a frontend splitting a packet in a way such that not all of the headers would come in one piece. Unfortunately the logic introduced there didn't account for the extreme case of the entire packet being split into as many pieces as permitted by the protocol, yet still being smaller than the area that's specially dealt with to keep all (possible) headers together. Such an unusual packet would therefore trigger a buffer overrun in the driver. | |||||
CVE-2023-0386 | 4 Canonical, Debian, Linux and 1 more | 13 Ubuntu Linux, Debian Linux, Linux Kernel and 10 more | 2025-06-18 | N/A | 7.8 HIGH |
A flaw was found in the Linux kernel, where unauthorized access to the execution of the setuid file with capabilities was found in the Linux kernel’s OverlayFS subsystem in how a user copies a capable file from a nosuid mount into another mount. This uid mapping bug allows a local user to escalate their privileges on the system. | |||||
CVE-2024-26362 | 3 Enpass, Linux, Microsoft | 3 Password Manager, Linux Kernel, Windows | 2025-06-17 | N/A | 8.8 HIGH |
HTML injection vulnerability in Enpass Password Manager Desktop Client 6.9.2 for Windows and Linux allows attackers to run arbitrary HTML code via creation of crafted note. | |||||
CVE-2023-46343 | 1 Linux | 1 Linux Kernel | 2025-06-17 | N/A | 5.5 MEDIUM |
In the Linux kernel before 6.5.9, there is a NULL pointer dereference in send_acknowledge in net/nfc/nci/spi.c. | |||||
CVE-2023-52922 | 1 Linux | 1 Linux Kernel | 2025-06-13 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: can: bcm: Fix UAF in bcm_proc_show() BUG: KASAN: slab-use-after-free in bcm_proc_show+0x969/0xa80 Read of size 8 at addr ffff888155846230 by task cat/7862 CPU: 1 PID: 7862 Comm: cat Not tainted 6.5.0-rc1-00153-gc8746099c197 #230 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0xd5/0x150 print_report+0xc1/0x5e0 kasan_report+0xba/0xf0 bcm_proc_show+0x969/0xa80 seq_read_iter+0x4f6/0x1260 seq_read+0x165/0x210 proc_reg_read+0x227/0x300 vfs_read+0x1d5/0x8d0 ksys_read+0x11e/0x240 do_syscall_64+0x35/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd Allocated by task 7846: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0x9e/0xa0 bcm_sendmsg+0x264b/0x44e0 sock_sendmsg+0xda/0x180 ____sys_sendmsg+0x735/0x920 ___sys_sendmsg+0x11d/0x1b0 __sys_sendmsg+0xfa/0x1d0 do_syscall_64+0x35/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd Freed by task 7846: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x27/0x40 ____kasan_slab_free+0x161/0x1c0 slab_free_freelist_hook+0x119/0x220 __kmem_cache_free+0xb4/0x2e0 rcu_core+0x809/0x1bd0 bcm_op is freed before procfs entry be removed in bcm_release(), this lead to bcm_proc_show() may read the freed bcm_op. | |||||
CVE-2025-3908 | 2 Linux, Openvpn | 2 Linux Kernel, Openvpn3linux | 2025-06-12 | N/A | 6.2 MEDIUM |
The configuration initialization tool in OpenVPN 3 Linux v20 through v24 on Linux allows a local attacker to use symlinks pointing at an arbitrary directory which will change the ownership and permissions of that destination directory. | |||||
CVE-2024-21116 | 2 Linux, Oracle | 2 Linux Kernel, Vm Virtualbox | 2025-06-09 | N/A | 7.8 HIGH |
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are Prior to 7.0.16. Easily exploitable vulnerability allows low privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. Successful attacks of this vulnerability can result in takeover of Oracle VM VirtualBox. Note: This vulnerability applies to Linux hosts only. CVSS 3.1 Base Score 7.8 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H). |