Vulnerabilities (CVE)

Filtered by NVD-CWE-noinfo
Total 31465 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2024-54502 1 Apple 7 Ipados, Iphone Os, Macos and 4 more 2025-11-03 N/A 6.5 MEDIUM
The issue was addressed with improved checks. This issue is fixed in watchOS 11.2, visionOS 2.2, tvOS 18.2, macOS Sequoia 15.2, Safari 18.2, iOS 18.2 and iPadOS 18.2. Processing maliciously crafted web content may lead to an unexpected process crash.
CVE-2024-54497 1 Apple 6 Ipados, Iphone Os, Macos and 3 more 2025-11-03 N/A 6.5 MEDIUM
The issue was addressed with improved checks. This issue is fixed in iPadOS 17.7.4, macOS Ventura 13.7.3, macOS Sonoma 14.7.3, visionOS 2.2, tvOS 18.2, watchOS 11.2, iOS 18.2 and iPadOS 18.2, macOS Sequoia 15.2. Processing web content may lead to a denial-of-service.
CVE-2024-54031 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_set_hash: unaligned atomic read on struct nft_set_ext Access to genmask field in struct nft_set_ext results in unaligned atomic read: [ 72.130109] Unable to handle kernel paging request at virtual address ffff0000c2bb708c [ 72.131036] Mem abort info: [ 72.131213] ESR = 0x0000000096000021 [ 72.131446] EC = 0x25: DABT (current EL), IL = 32 bits [ 72.132209] SET = 0, FnV = 0 [ 72.133216] EA = 0, S1PTW = 0 [ 72.134080] FSC = 0x21: alignment fault [ 72.135593] Data abort info: [ 72.137194] ISV = 0, ISS = 0x00000021, ISS2 = 0x00000000 [ 72.142351] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 72.145989] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 72.150115] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000237d27000 [ 72.154893] [ffff0000c2bb708c] pgd=0000000000000000, p4d=180000023ffff403, pud=180000023f84b403, pmd=180000023f835403, +pte=0068000102bb7707 [ 72.163021] Internal error: Oops: 0000000096000021 [#1] SMP [...] [ 72.170041] CPU: 7 UID: 0 PID: 54 Comm: kworker/7:0 Tainted: G E 6.13.0-rc3+ #2 [ 72.170509] Tainted: [E]=UNSIGNED_MODULE [ 72.170720] Hardware name: QEMU QEMU Virtual Machine, BIOS edk2-stable202302-for-qemu 03/01/2023 [ 72.171192] Workqueue: events_power_efficient nft_rhash_gc [nf_tables] [ 72.171552] pstate: 21400005 (nzCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) [ 72.171915] pc : nft_rhash_gc+0x200/0x2d8 [nf_tables] [ 72.172166] lr : nft_rhash_gc+0x128/0x2d8 [nf_tables] [ 72.172546] sp : ffff800081f2bce0 [ 72.172724] x29: ffff800081f2bd40 x28: ffff0000c2bb708c x27: 0000000000000038 [ 72.173078] x26: ffff0000c6780ef0 x25: ffff0000c643df00 x24: ffff0000c6778f78 [ 72.173431] x23: 000000000000001a x22: ffff0000c4b1f000 x21: ffff0000c6780f78 [ 72.173782] x20: ffff0000c2bb70dc x19: ffff0000c2bb7080 x18: 0000000000000000 [ 72.174135] x17: ffff0000c0a4e1c0 x16: 0000000000003000 x15: 0000ac26d173b978 [ 72.174485] x14: ffffffffffffffff x13: 0000000000000030 x12: ffff0000c6780ef0 [ 72.174841] x11: 0000000000000000 x10: ffff800081f2bcf8 x9 : ffff0000c3000000 [ 72.175193] x8 : 00000000000004be x7 : 0000000000000000 x6 : 0000000000000000 [ 72.175544] x5 : 0000000000000040 x4 : ffff0000c3000010 x3 : 0000000000000000 [ 72.175871] x2 : 0000000000003a98 x1 : ffff0000c2bb708c x0 : 0000000000000004 [ 72.176207] Call trace: [ 72.176316] nft_rhash_gc+0x200/0x2d8 [nf_tables] (P) [ 72.176653] process_one_work+0x178/0x3d0 [ 72.176831] worker_thread+0x200/0x3f0 [ 72.176995] kthread+0xe8/0xf8 [ 72.177130] ret_from_fork+0x10/0x20 [ 72.177289] Code: 54fff984 d503201f d2800080 91003261 (f820303f) [ 72.177557] ---[ end trace 0000000000000000 ]--- Align struct nft_set_ext to word size to address this and documentation it. pahole reports that this increases the size of elements for rhash and pipapo in 8 bytes on x86_64.
CVE-2024-53690 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: nilfs2: prevent use of deleted inode syzbot reported a WARNING in nilfs_rmdir. [1] Because the inode bitmap is corrupted, an inode with an inode number that should exist as a ".nilfs" file was reassigned by nilfs_mkdir for "file0", causing an inode duplication during execution. And this causes an underflow of i_nlink in rmdir operations. The inode is used twice by the same task to unmount and remove directories ".nilfs" and "file0", it trigger warning in nilfs_rmdir. Avoid to this issue, check i_nlink in nilfs_iget(), if it is 0, it means that this inode has been deleted, and iput is executed to reclaim it. [1] WARNING: CPU: 1 PID: 5824 at fs/inode.c:407 drop_nlink+0xc4/0x110 fs/inode.c:407 ... Call Trace: <TASK> nilfs_rmdir+0x1b0/0x250 fs/nilfs2/namei.c:342 vfs_rmdir+0x3a3/0x510 fs/namei.c:4394 do_rmdir+0x3b5/0x580 fs/namei.c:4453 __do_sys_rmdir fs/namei.c:4472 [inline] __se_sys_rmdir fs/namei.c:4470 [inline] __x64_sys_rmdir+0x47/0x50 fs/namei.c:4470 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
CVE-2024-53241 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: x86/xen: don't do PV iret hypercall through hypercall page Instead of jumping to the Xen hypercall page for doing the iret hypercall, directly code the required sequence in xen-asm.S. This is done in preparation of no longer using hypercall page at all, as it has shown to cause problems with speculation mitigations. This is part of XSA-466 / CVE-2024-53241.
CVE-2024-53240 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: xen/netfront: fix crash when removing device When removing a netfront device directly after a suspend/resume cycle it might happen that the queues have not been setup again, causing a crash during the attempt to stop the queues another time. Fix that by checking the queues are existing before trying to stop them. This is XSA-465 / CVE-2024-53240.
CVE-2024-53234 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: erofs: handle NONHEAD !delta[1] lclusters gracefully syzbot reported a WARNING in iomap_iter_done: iomap_fiemap+0x73b/0x9b0 fs/iomap/fiemap.c:80 ioctl_fiemap fs/ioctl.c:220 [inline] Generally, NONHEAD lclusters won't have delta[1]==0, except for crafted images and filesystems created by pre-1.0 mkfs versions. Previously, it would immediately bail out if delta[1]==0, which led to inadequate decompressed lengths (thus FIEMAP is impacted). Treat it as delta[1]=1 to work around these legacy mkfs versions. `lclusterbits > 14` is illegal for compact indexes, error out too.
CVE-2024-53229 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix the qp flush warnings in req When the qp is in error state, the status of WQEs in the queue should be set to error. Or else the following will appear. [ 920.617269] WARNING: CPU: 1 PID: 21 at drivers/infiniband/sw/rxe/rxe_comp.c:756 rxe_completer+0x989/0xcc0 [rdma_rxe] [ 920.617744] Modules linked in: rnbd_client(O) rtrs_client(O) rtrs_core(O) rdma_ucm rdma_cm iw_cm ib_cm crc32_generic rdma_rxe ip6_udp_tunnel udp_tunnel ib_uverbs ib_core loop brd null_blk ipv6 [ 920.618516] CPU: 1 PID: 21 Comm: ksoftirqd/1 Tainted: G O 6.1.113-storage+ #65 [ 920.618986] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [ 920.619396] RIP: 0010:rxe_completer+0x989/0xcc0 [rdma_rxe] [ 920.619658] Code: 0f b6 84 24 3a 02 00 00 41 89 84 24 44 04 00 00 e9 2a f7 ff ff 39 ca bb 03 00 00 00 b8 0e 00 00 00 48 0f 45 d8 e9 15 f7 ff ff <0f> 0b e9 cb f8 ff ff 41 bf f5 ff ff ff e9 08 f8 ff ff 49 8d bc 24 [ 920.620482] RSP: 0018:ffff97b7c00bbc38 EFLAGS: 00010246 [ 920.620817] RAX: 0000000000000000 RBX: 000000000000000c RCX: 0000000000000008 [ 920.621183] RDX: ffff960dc396ebc0 RSI: 0000000000005400 RDI: ffff960dc4e2fbac [ 920.621548] RBP: 0000000000000000 R08: 0000000000000001 R09: ffffffffac406450 [ 920.621884] R10: ffffffffac4060c0 R11: 0000000000000001 R12: ffff960dc4e2f800 [ 920.622254] R13: ffff960dc4e2f928 R14: ffff97b7c029c580 R15: 0000000000000000 [ 920.622609] FS: 0000000000000000(0000) GS:ffff960ef7d00000(0000) knlGS:0000000000000000 [ 920.622979] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 920.623245] CR2: 00007fa056965e90 CR3: 00000001107f1000 CR4: 00000000000006e0 [ 920.623680] Call Trace: [ 920.623815] <TASK> [ 920.623933] ? __warn+0x79/0xc0 [ 920.624116] ? rxe_completer+0x989/0xcc0 [rdma_rxe] [ 920.624356] ? report_bug+0xfb/0x150 [ 920.624594] ? handle_bug+0x3c/0x60 [ 920.624796] ? exc_invalid_op+0x14/0x70 [ 920.624976] ? asm_exc_invalid_op+0x16/0x20 [ 920.625203] ? rxe_completer+0x989/0xcc0 [rdma_rxe] [ 920.625474] ? rxe_completer+0x329/0xcc0 [rdma_rxe] [ 920.625749] rxe_do_task+0x80/0x110 [rdma_rxe] [ 920.626037] rxe_requester+0x625/0xde0 [rdma_rxe] [ 920.626310] ? rxe_cq_post+0xe2/0x180 [rdma_rxe] [ 920.626583] ? do_complete+0x18d/0x220 [rdma_rxe] [ 920.626812] ? rxe_completer+0x1a3/0xcc0 [rdma_rxe] [ 920.627050] rxe_do_task+0x80/0x110 [rdma_rxe] [ 920.627285] tasklet_action_common.constprop.0+0xa4/0x120 [ 920.627522] handle_softirqs+0xc2/0x250 [ 920.627728] ? sort_range+0x20/0x20 [ 920.627942] run_ksoftirqd+0x1f/0x30 [ 920.628158] smpboot_thread_fn+0xc7/0x1b0 [ 920.628334] kthread+0xd6/0x100 [ 920.628504] ? kthread_complete_and_exit+0x20/0x20 [ 920.628709] ret_from_fork+0x1f/0x30 [ 920.628892] </TASK>
CVE-2024-53220 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to account dirty data in __get_secs_required() It will trigger system panic w/ testcase in [1]: ------------[ cut here ]------------ kernel BUG at fs/f2fs/segment.c:2752! RIP: 0010:new_curseg+0xc81/0x2110 Call Trace: f2fs_allocate_data_block+0x1c91/0x4540 do_write_page+0x163/0xdf0 f2fs_outplace_write_data+0x1aa/0x340 f2fs_do_write_data_page+0x797/0x2280 f2fs_write_single_data_page+0x16cd/0x2190 f2fs_write_cache_pages+0x994/0x1c80 f2fs_write_data_pages+0x9cc/0xea0 do_writepages+0x194/0x7a0 filemap_fdatawrite_wbc+0x12b/0x1a0 __filemap_fdatawrite_range+0xbb/0xf0 file_write_and_wait_range+0xa1/0x110 f2fs_do_sync_file+0x26f/0x1c50 f2fs_sync_file+0x12b/0x1d0 vfs_fsync_range+0xfa/0x230 do_fsync+0x3d/0x80 __x64_sys_fsync+0x37/0x50 x64_sys_call+0x1e88/0x20d0 do_syscall_64+0x4b/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e The root cause is if checkpoint_disabling and lfs_mode are both on, it will trigger OPU for all overwritten data, it may cost more free segment than expected, so f2fs must account those data correctly to calculate cosumed free segments later, and return ENOSPC earlier to avoid run out of free segment during block allocation. [1] https://lore.kernel.org/fstests/20241015025106.3203676-1-chao@kernel.org/
CVE-2024-53196 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Don't retire aborted MMIO instruction Returning an abort to the guest for an unsupported MMIO access is a documented feature of the KVM UAPI. Nevertheless, it's clear that this plumbing has seen limited testing, since userspace can trivially cause a WARN in the MMIO return: WARNING: CPU: 0 PID: 30558 at arch/arm64/include/asm/kvm_emulate.h:536 kvm_handle_mmio_return+0x46c/0x5c4 arch/arm64/include/asm/kvm_emulate.h:536 Call trace: kvm_handle_mmio_return+0x46c/0x5c4 arch/arm64/include/asm/kvm_emulate.h:536 kvm_arch_vcpu_ioctl_run+0x98/0x15b4 arch/arm64/kvm/arm.c:1133 kvm_vcpu_ioctl+0x75c/0xa78 virt/kvm/kvm_main.c:4487 __do_sys_ioctl fs/ioctl.c:51 [inline] __se_sys_ioctl fs/ioctl.c:893 [inline] __arm64_sys_ioctl+0x14c/0x1c8 fs/ioctl.c:893 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x1e0/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x38/0x68 arch/arm64/kernel/entry-common.c:712 el0t_64_sync_handler+0x90/0xfc arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598 The splat is complaining that KVM is advancing PC while an exception is pending, i.e. that KVM is retiring the MMIO instruction despite a pending synchronous external abort. Womp womp. Fix the glaring UAPI bug by skipping over all the MMIO emulation in case there is a pending synchronous exception. Note that while userspace is capable of pending an asynchronous exception (SError, IRQ, or FIQ), it is still safe to retire the MMIO instruction in this case as (1) they are by definition asynchronous, and (2) KVM relies on hardware support for pending/delivering these exceptions instead of the software state machine for advancing PC.
CVE-2024-53190 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: Drastically reduce the attempts to read efuse in case of failures Syzkaller reported a hung task with uevent_show() on stack trace. That specific issue was addressed by another commit [0], but even with that fix applied (for example, running v6.12-rc5) we face another type of hung task that comes from the same reproducer [1]. By investigating that, we could narrow it to the following path: (a) Syzkaller emulates a Realtek USB WiFi adapter using raw-gadget and dummy_hcd infrastructure. (b) During the probe of rtl8192cu, the driver ends-up performing an efuse read procedure (which is related to EEPROM load IIUC), and here lies the issue: the function read_efuse() calls read_efuse_byte() many times, as loop iterations depending on the efuse size (in our example, 512 in total). This procedure for reading efuse bytes relies in a loop that performs an I/O read up to *10k* times in case of failures. We measured the time of the loop inside read_efuse_byte() alone, and in this reproducer (which involves the dummy_hcd emulation layer), it takes 15 seconds each. As a consequence, we have the driver stuck in its probe routine for big time, exposing a stack trace like below if we attempt to reboot the system, for example: task:kworker/0:3 state:D stack:0 pid:662 tgid:662 ppid:2 flags:0x00004000 Workqueue: usb_hub_wq hub_event Call Trace: __schedule+0xe22/0xeb6 schedule_timeout+0xe7/0x132 __wait_for_common+0xb5/0x12e usb_start_wait_urb+0xc5/0x1ef ? usb_alloc_urb+0x95/0xa4 usb_control_msg+0xff/0x184 _usbctrl_vendorreq_sync+0xa0/0x161 _usb_read_sync+0xb3/0xc5 read_efuse_byte+0x13c/0x146 read_efuse+0x351/0x5f0 efuse_read_all_map+0x42/0x52 rtl_efuse_shadow_map_update+0x60/0xef rtl_get_hwinfo+0x5d/0x1c2 rtl92cu_read_eeprom_info+0x10a/0x8d5 ? rtl92c_read_chip_version+0x14f/0x17e rtl_usb_probe+0x323/0x851 usb_probe_interface+0x278/0x34b really_probe+0x202/0x4a4 __driver_probe_device+0x166/0x1b2 driver_probe_device+0x2f/0xd8 [...] We propose hereby to drastically reduce the attempts of doing the I/O reads in case of failures, restricted to USB devices (given that they're inherently slower than PCIe ones). By retrying up to 10 times (instead of 10000), we got reponsiveness in the reproducer, while seems reasonable to believe that there's no sane USB device implementation in the field requiring this amount of retries at every I/O read in order to properly work. Based on that assumption, it'd be good to have it backported to stable but maybe not since driver implementation (the 10k number comes from day 0), perhaps up to 6.x series makes sense. [0] Commit 15fffc6a5624 ("driver core: Fix uevent_show() vs driver detach race") [1] A note about that: this syzkaller report presents multiple reproducers that differs by the type of emulated USB device. For this specific case, check the entry from 2024/08/08 06:23 in the list of crashes; the C repro is available at https://syzkaller.appspot.com/text?tag=ReproC&x=1521fc83980000.
CVE-2024-53184 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: um: ubd: Do not use drvdata in release The drvdata is not available in release. Let's just use container_of() to get the ubd instance. Otherwise, removing a ubd device will result in a crash: RIP: 0033:blk_mq_free_tag_set+0x1f/0xba RSP: 00000000e2083bf0 EFLAGS: 00010246 RAX: 000000006021463a RBX: 0000000000000348 RCX: 0000000062604d00 RDX: 0000000004208060 RSI: 00000000605241a0 RDI: 0000000000000348 RBP: 00000000e2083c10 R08: 0000000062414010 R09: 00000000601603f7 R10: 000000000000133a R11: 000000006038c4bd R12: 0000000000000000 R13: 0000000060213a5c R14: 0000000062405d20 R15: 00000000604f7aa0 Kernel panic - not syncing: Segfault with no mm CPU: 0 PID: 17 Comm: kworker/0:1 Not tainted 6.8.0-rc3-00107-gba3f67c11638 #1 Workqueue: events mc_work_proc Stack: 00000000 604f7ef0 62c5d000 62405d20 e2083c30 6002c776 6002c755 600e47ff e2083c60 6025ffe3 04208060 603d36e0 Call Trace: [<6002c776>] ubd_device_release+0x21/0x55 [<6002c755>] ? ubd_device_release+0x0/0x55 [<600e47ff>] ? kfree+0x0/0x100 [<6025ffe3>] device_release+0x70/0xba [<60381d6a>] kobject_put+0xb5/0xe2 [<6026027b>] put_device+0x19/0x1c [<6026a036>] platform_device_put+0x26/0x29 [<6026ac5a>] platform_device_unregister+0x2c/0x2e [<6002c52e>] ubd_remove+0xb8/0xd6 [<6002bb74>] ? mconsole_reply+0x0/0x50 [<6002b926>] mconsole_remove+0x160/0x1cc [<6002bbbc>] ? mconsole_reply+0x48/0x50 [<6003379c>] ? um_set_signals+0x3b/0x43 [<60061c55>] ? update_min_vruntime+0x14/0x70 [<6006251f>] ? dequeue_task_fair+0x164/0x235 [<600620aa>] ? update_cfs_group+0x0/0x40 [<603a0e77>] ? __schedule+0x0/0x3ed [<60033761>] ? um_set_signals+0x0/0x43 [<6002af6a>] mc_work_proc+0x77/0x91 [<600520b4>] process_scheduled_works+0x1af/0x2c3 [<6004ede3>] ? assign_work+0x0/0x58 [<600527a1>] worker_thread+0x2f7/0x37a [<6004ee3b>] ? set_pf_worker+0x0/0x64 [<6005765d>] ? arch_local_irq_save+0x0/0x2d [<60058e07>] ? kthread_exit+0x0/0x3a [<600524aa>] ? worker_thread+0x0/0x37a [<60058f9f>] kthread+0x130/0x135 [<6002068e>] new_thread_handler+0x85/0xb6
CVE-2024-53183 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: um: net: Do not use drvdata in release The drvdata is not available in release. Let's just use container_of() to get the uml_net instance. Otherwise, removing a network device will result in a crash: RIP: 0033:net_device_release+0x10/0x6f RSP: 00000000e20c7c40 EFLAGS: 00010206 RAX: 000000006002e4e7 RBX: 00000000600f1baf RCX: 00000000624074e0 RDX: 0000000062778000 RSI: 0000000060551c80 RDI: 00000000627af028 RBP: 00000000e20c7c50 R08: 00000000603ad594 R09: 00000000e20c7b70 R10: 000000000000135a R11: 00000000603ad422 R12: 0000000000000000 R13: 0000000062c7af00 R14: 0000000062406d60 R15: 00000000627700b6 Kernel panic - not syncing: Segfault with no mm CPU: 0 UID: 0 PID: 29 Comm: kworker/0:2 Not tainted 6.12.0-rc6-g59b723cd2adb #1 Workqueue: events mc_work_proc Stack: 627af028 62c7af00 e20c7c80 60276fcd 62778000 603f5820 627af028 00000000 e20c7cb0 603a2bcd 627af000 62770010 Call Trace: [<60276fcd>] device_release+0x70/0xba [<603a2bcd>] kobject_put+0xba/0xe7 [<60277265>] put_device+0x19/0x1c [<60281266>] platform_device_put+0x26/0x29 [<60281e5f>] platform_device_unregister+0x2c/0x2e [<6002ec9c>] net_remove+0x63/0x69 [<60031316>] ? mconsole_reply+0x0/0x50 [<600310c8>] mconsole_remove+0x160/0x1cc [<60087d40>] ? __remove_hrtimer+0x38/0x74 [<60087ff8>] ? hrtimer_try_to_cancel+0x8c/0x98 [<6006b3cf>] ? dl_server_stop+0x3f/0x48 [<6006b390>] ? dl_server_stop+0x0/0x48 [<600672e8>] ? dequeue_entities+0x327/0x390 [<60038fa6>] ? um_set_signals+0x0/0x43 [<6003070c>] mc_work_proc+0x77/0x91 [<60057664>] process_scheduled_works+0x1b3/0x2dd [<60055f32>] ? assign_work+0x0/0x58 [<60057f0a>] worker_thread+0x1e9/0x293 [<6005406f>] ? set_pf_worker+0x0/0x64 [<6005d65d>] ? arch_local_irq_save+0x0/0x2d [<6005d748>] ? kthread_exit+0x0/0x3a [<60057d21>] ? worker_thread+0x0/0x293 [<6005dbf1>] kthread+0x126/0x12b [<600219c5>] new_thread_handler+0x85/0xb6
CVE-2024-53181 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: um: vector: Do not use drvdata in release The drvdata is not available in release. Let's just use container_of() to get the vector_device instance. Otherwise, removing a vector device will result in a crash: RIP: 0033:vector_device_release+0xf/0x50 RSP: 00000000e187bc40 EFLAGS: 00010202 RAX: 0000000060028f61 RBX: 00000000600f1baf RCX: 00000000620074e0 RDX: 000000006220b9c0 RSI: 0000000060551c80 RDI: 0000000000000000 RBP: 00000000e187bc50 R08: 00000000603ad594 R09: 00000000e187bb70 R10: 000000000000135a R11: 00000000603ad422 R12: 00000000623ae028 R13: 000000006287a200 R14: 0000000062006d30 R15: 00000000623700b6 Kernel panic - not syncing: Segfault with no mm CPU: 0 UID: 0 PID: 16 Comm: kworker/0:1 Not tainted 6.12.0-rc6-g59b723cd2adb #1 Workqueue: events mc_work_proc Stack: 60028f61 623ae028 e187bc80 60276fcd 6220b9c0 603f5820 623ae028 00000000 e187bcb0 603a2bcd 623ae000 62370010 Call Trace: [<60028f61>] ? vector_device_release+0x0/0x50 [<60276fcd>] device_release+0x70/0xba [<603a2bcd>] kobject_put+0xba/0xe7 [<60277265>] put_device+0x19/0x1c [<60281266>] platform_device_put+0x26/0x29 [<60281e5f>] platform_device_unregister+0x2c/0x2e [<60029422>] vector_remove+0x52/0x58 [<60031316>] ? mconsole_reply+0x0/0x50 [<600310c8>] mconsole_remove+0x160/0x1cc [<603b19f4>] ? strlen+0x0/0x15 [<60066611>] ? __dequeue_entity+0x1a9/0x206 [<600666a7>] ? set_next_entity+0x39/0x63 [<6006666e>] ? set_next_entity+0x0/0x63 [<60038fa6>] ? um_set_signals+0x0/0x43 [<6003070c>] mc_work_proc+0x77/0x91 [<60057664>] process_scheduled_works+0x1b3/0x2dd [<60055f32>] ? assign_work+0x0/0x58 [<60057f0a>] worker_thread+0x1e9/0x293 [<6005406f>] ? set_pf_worker+0x0/0x64 [<6005d65d>] ? arch_local_irq_save+0x0/0x2d [<6005d748>] ? kthread_exit+0x0/0x3a [<60057d21>] ? worker_thread+0x0/0x293 [<6005dbf1>] kthread+0x126/0x12b [<600219c5>] new_thread_handler+0x85/0xb6
CVE-2024-53172 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ubi: fastmap: Fix duplicate slab cache names while attaching Since commit 4c39529663b9 ("slab: Warn on duplicate cache names when DEBUG_VM=y"), the duplicate slab cache names can be detected and a kernel WARNING is thrown out. In UBI fast attaching process, alloc_ai() could be invoked twice with the same slab cache name 'ubi_aeb_slab_cache', which will trigger following warning messages: kmem_cache of name 'ubi_aeb_slab_cache' already exists WARNING: CPU: 0 PID: 7519 at mm/slab_common.c:107 __kmem_cache_create_args+0x100/0x5f0 Modules linked in: ubi(+) nandsim [last unloaded: nandsim] CPU: 0 UID: 0 PID: 7519 Comm: modprobe Tainted: G 6.12.0-rc2 RIP: 0010:__kmem_cache_create_args+0x100/0x5f0 Call Trace: __kmem_cache_create_args+0x100/0x5f0 alloc_ai+0x295/0x3f0 [ubi] ubi_attach+0x3c3/0xcc0 [ubi] ubi_attach_mtd_dev+0x17cf/0x3fa0 [ubi] ubi_init+0x3fb/0x800 [ubi] do_init_module+0x265/0x7d0 __x64_sys_finit_module+0x7a/0xc0 The problem could be easily reproduced by loading UBI device by fastmap with CONFIG_DEBUG_VM=y. Fix it by using different slab names for alloc_ai() callers.
CVE-2024-53164 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: sched: fix ordering of qlen adjustment Changes to sch->q.qlen around qdisc_tree_reduce_backlog() need to happen _before_ a call to said function because otherwise it may fail to notify parent qdiscs when the child is about to become empty.
CVE-2024-53148 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: comedi: Flush partial mappings in error case If some remap_pfn_range() calls succeeded before one failed, we still have buffer pages mapped into the userspace page tables when we drop the buffer reference with comedi_buf_map_put(bm). The userspace mappings are only cleaned up later in the mmap error path. Fix it by explicitly flushing all mappings in our VMA on the error path. See commit 79a61cc3fc04 ("mm: avoid leaving partial pfn mappings around in error case").
CVE-2024-53141 1 Linux 1 Linux Kernel 2025-11-03 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: add missing range check in bitmap_ip_uadt When tb[IPSET_ATTR_IP_TO] is not present but tb[IPSET_ATTR_CIDR] exists, the values of ip and ip_to are slightly swapped. Therefore, the range check for ip should be done later, but this part is missing and it seems that the vulnerability occurs. So we should add missing range checks and remove unnecessary range checks.
CVE-2024-53140 1 Linux 1 Linux Kernel 2025-11-03 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: netlink: terminate outstanding dump on socket close Netlink supports iterative dumping of data. It provides the families the following ops: - start - (optional) kicks off the dumping process - dump - actual dump helper, keeps getting called until it returns 0 - done - (optional) pairs with .start, can be used for cleanup The whole process is asynchronous and the repeated calls to .dump don't actually happen in a tight loop, but rather are triggered in response to recvmsg() on the socket. This gives the user full control over the dump, but also means that the user can close the socket without getting to the end of the dump. To make sure .start is always paired with .done we check if there is an ongoing dump before freeing the socket, and if so call .done. The complication is that sockets can get freed from BH and .done is allowed to sleep. So we use a workqueue to defer the call, when needed. Unfortunately this does not work correctly. What we defer is not the cleanup but rather releasing a reference on the socket. We have no guarantee that we own the last reference, if someone else holds the socket they may release it in BH and we're back to square one. The whole dance, however, appears to be unnecessary. Only the user can interact with dumps, so we can clean up when socket is closed. And close always happens in process context. Some async code may still access the socket after close, queue notification skbs to it etc. but no dumps can start, end or otherwise make progress. Delete the workqueue and flush the dump state directly from the release handler. Note that further cleanup is possible in -next, for instance we now always call .done before releasing the main module reference, so dump doesn't have to take a reference of its own.
CVE-2024-53135 1 Linux 1 Linux Kernel 2025-11-03 N/A 6.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: KVM: VMX: Bury Intel PT virtualization (guest/host mode) behind CONFIG_BROKEN Hide KVM's pt_mode module param behind CONFIG_BROKEN, i.e. disable support for virtualizing Intel PT via guest/host mode unless BROKEN=y. There are myriad bugs in the implementation, some of which are fatal to the guest, and others which put the stability and health of the host at risk. For guest fatalities, the most glaring issue is that KVM fails to ensure tracing is disabled, and *stays* disabled prior to VM-Enter, which is necessary as hardware disallows loading (the guest's) RTIT_CTL if tracing is enabled (enforced via a VMX consistency check). Per the SDM: If the logical processor is operating with Intel PT enabled (if IA32_RTIT_CTL.TraceEn = 1) at the time of VM entry, the "load IA32_RTIT_CTL" VM-entry control must be 0. On the host side, KVM doesn't validate the guest CPUID configuration provided by userspace, and even worse, uses the guest configuration to decide what MSRs to save/load at VM-Enter and VM-Exit. E.g. configuring guest CPUID to enumerate more address ranges than are supported in hardware will result in KVM trying to passthrough, save, and load non-existent MSRs, which generates a variety of WARNs, ToPA ERRORs in the host, a potential deadlock, etc.