Total
28349 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2024-45115 | 1 Adobe | 3 Commerce, Commerce B2b, Magento | 2024-10-10 | N/A | 9.8 CRITICAL |
Adobe Commerce versions 2.4.7-p2, 2.4.6-p7, 2.4.5-p9, 2.4.4-p10 and earlier are affected by an Improper Authentication vulnerability that could result in privilege escalation. An attacker could exploit this vulnerability to gain unauthorized access or elevated privileges within the application. Exploitation of this issue does not require user interaction. | |||||
CVE-2024-45117 | 1 Adobe | 3 Commerce, Commerce B2b, Magento | 2024-10-10 | N/A | 7.6 HIGH |
Adobe Commerce versions 2.4.7-p2, 2.4.6-p7, 2.4.5-p9, 2.4.4-p10 and earlier are affected by an Improper Input Validation vulnerability that could lead to arbitrary file system read. An admin attacker could exploit this vulnerability to read files from the system outside of the intended directories via PHP filter chain and also can have a low-availability impact on the service. Exploitation of this issue does not require user interaction and scope is changed. | |||||
CVE-2024-45118 | 1 Adobe | 3 Commerce, Commerce B2b, Magento | 2024-10-10 | N/A | 6.5 MEDIUM |
Adobe Commerce versions 2.4.7-p2, 2.4.6-p7, 2.4.5-p9, 2.4.4-p10 and earlier are affected by an Improper Access Control vulnerability that could result in a Security feature bypass. A low-privileged attacker could leverage this vulnerability to bypass security measures and have high impact on integrity. Exploitation of this issue does not require user interaction. | |||||
CVE-2024-45121 | 1 Adobe | 3 Commerce, Commerce B2b, Magento | 2024-10-10 | N/A | 4.3 MEDIUM |
Adobe Commerce versions 2.4.7-p2, 2.4.6-p7, 2.4.5-p9, 2.4.4-p10 and earlier are affected by an Improper Access Control vulnerability that could result in a Security feature bypass. A low-privileged attacker could leverage this vulnerability to bypass security measures and have a low impact on integrity. Exploitation of this issue does not require user interaction. | |||||
CVE-2024-45122 | 1 Adobe | 3 Commerce, Commerce B2b, Magento | 2024-10-10 | N/A | 4.3 MEDIUM |
Adobe Commerce versions 2.4.7-p2, 2.4.6-p7, 2.4.5-p9, 2.4.4-p10 and earlier are affected by an Improper Access Control vulnerability that could result in a Security feature bypass. A low-privileged attacker could leverage this vulnerability to bypass security measures and have a low impact on confidentiality. Exploitation of this issue does not require user interaction. | |||||
CVE-2024-30118 | 1 Hcltech | 1 Connections | 2024-10-10 | N/A | 5.7 MEDIUM |
HCL Connections is vulnerable to an information disclosure vulnerability which could allow a user to obtain sensitive information they are not entitled to because of improperly handling the request data. | |||||
CVE-2024-44958 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: sched/smt: Fix unbalance sched_smt_present dec/inc I got the following warn report while doing stress test: jump label: negative count! WARNING: CPU: 3 PID: 38 at kernel/jump_label.c:263 static_key_slow_try_dec+0x9d/0xb0 Call Trace: <TASK> __static_key_slow_dec_cpuslocked+0x16/0x70 sched_cpu_deactivate+0x26e/0x2a0 cpuhp_invoke_callback+0x3ad/0x10d0 cpuhp_thread_fun+0x3f5/0x680 smpboot_thread_fn+0x56d/0x8d0 kthread+0x309/0x400 ret_from_fork+0x41/0x70 ret_from_fork_asm+0x1b/0x30 </TASK> Because when cpuset_cpu_inactive() fails in sched_cpu_deactivate(), the cpu offline failed, but sched_smt_present is decremented before calling sched_cpu_deactivate(), it leads to unbalanced dec/inc, so fix it by incrementing sched_smt_present in the error path. | |||||
CVE-2024-44959 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: tracefs: Use generic inode RCU for synchronizing freeing With structure layout randomization enabled for 'struct inode' we need to avoid overlapping any of the RCU-used / initialized-only-once members, e.g. i_lru or i_sb_list to not corrupt related list traversals when making use of the rcu_head. For an unlucky structure layout of 'struct inode' we may end up with the following splat when running the ftrace selftests: [<...>] list_del corruption, ffff888103ee2cb0->next (tracefs_inode_cache+0x0/0x4e0 [slab object]) is NULL (prev is tracefs_inode_cache+0x78/0x4e0 [slab object]) [<...>] ------------[ cut here ]------------ [<...>] kernel BUG at lib/list_debug.c:54! [<...>] invalid opcode: 0000 [#1] PREEMPT SMP KASAN [<...>] CPU: 3 PID: 2550 Comm: mount Tainted: G N 6.8.12-grsec+ #122 ed2f536ca62f28b087b90e3cc906a8d25b3ddc65 [<...>] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014 [<...>] RIP: 0010:[<ffffffff84656018>] __list_del_entry_valid_or_report+0x138/0x3e0 [<...>] Code: 48 b8 99 fb 65 f2 ff ff ff ff e9 03 5c d9 fc cc 48 b8 99 fb 65 f2 ff ff ff ff e9 33 5a d9 fc cc 48 b8 99 fb 65 f2 ff ff ff ff <0f> 0b 4c 89 e9 48 89 ea 48 89 ee 48 c7 c7 60 8f dd 89 31 c0 e8 2f [<...>] RSP: 0018:fffffe80416afaf0 EFLAGS: 00010283 [<...>] RAX: 0000000000000098 RBX: ffff888103ee2cb0 RCX: 0000000000000000 [<...>] RDX: ffffffff84655fe8 RSI: ffffffff89dd8b60 RDI: 0000000000000001 [<...>] RBP: ffff888103ee2cb0 R08: 0000000000000001 R09: fffffbd0082d5f25 [<...>] R10: fffffe80416af92f R11: 0000000000000001 R12: fdf99c16731d9b6d [<...>] R13: 0000000000000000 R14: ffff88819ad4b8b8 R15: 0000000000000000 [<...>] RBX: tracefs_inode_cache+0x0/0x4e0 [slab object] [<...>] RDX: __list_del_entry_valid_or_report+0x108/0x3e0 [<...>] RSI: __func__.47+0x4340/0x4400 [<...>] RBP: tracefs_inode_cache+0x0/0x4e0 [slab object] [<...>] RSP: process kstack fffffe80416afaf0+0x7af0/0x8000 [mount 2550 2550] [<...>] R09: kasan shadow of process kstack fffffe80416af928+0x7928/0x8000 [mount 2550 2550] [<...>] R10: process kstack fffffe80416af92f+0x792f/0x8000 [mount 2550 2550] [<...>] R14: tracefs_inode_cache+0x78/0x4e0 [slab object] [<...>] FS: 00006dcb380c1840(0000) GS:ffff8881e0600000(0000) knlGS:0000000000000000 [<...>] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [<...>] CR2: 000076ab72b30e84 CR3: 000000000b088004 CR4: 0000000000360ef0 shadow CR4: 0000000000360ef0 [<...>] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [<...>] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [<...>] ASID: 0003 [<...>] Stack: [<...>] ffffffff818a2315 00000000f5c856ee ffffffff896f1840 ffff888103ee2cb0 [<...>] ffff88812b6b9750 0000000079d714b6 fffffbfff1e9280b ffffffff8f49405f [<...>] 0000000000000001 0000000000000000 ffff888104457280 ffffffff8248b392 [<...>] Call Trace: [<...>] <TASK> [<...>] [<ffffffff818a2315>] ? lock_release+0x175/0x380 fffffe80416afaf0 [<...>] [<ffffffff8248b392>] list_lru_del+0x152/0x740 fffffe80416afb48 [<...>] [<ffffffff8248ba93>] list_lru_del_obj+0x113/0x280 fffffe80416afb88 [<...>] [<ffffffff8940fd19>] ? _atomic_dec_and_lock+0x119/0x200 fffffe80416afb90 [<...>] [<ffffffff8295b244>] iput_final+0x1c4/0x9a0 fffffe80416afbb8 [<...>] [<ffffffff8293a52b>] dentry_unlink_inode+0x44b/0xaa0 fffffe80416afbf8 [<...>] [<ffffffff8293fefc>] __dentry_kill+0x23c/0xf00 fffffe80416afc40 [<...>] [<ffffffff8953a85f>] ? __this_cpu_preempt_check+0x1f/0xa0 fffffe80416afc48 [<...>] [<ffffffff82949ce5>] ? shrink_dentry_list+0x1c5/0x760 fffffe80416afc70 [<...>] [<ffffffff82949b71>] ? shrink_dentry_list+0x51/0x760 fffffe80416afc78 [<...>] [<ffffffff82949da8>] shrink_dentry_list+0x288/0x760 fffffe80416afc80 [<...>] [<ffffffff8294ae75>] shrink_dcache_sb+0x155/0x420 fffffe80416afcc8 [<...>] [<ffffffff8953a7c3>] ? debug_smp_processor_id+0x23/0xa0 fffffe80416afce0 [<...>] [<ffffffff8294ad20>] ? do_one_tre ---truncated--- | |||||
CVE-2024-44976 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ata: pata_macio: Fix DMA table overflow Kolbjørn and Jonáš reported that their 32-bit PowerMacs were crashing in pata-macio since commit 09fe2bfa6b83 ("ata: pata_macio: Fix max_segment_size with PAGE_SIZE == 64K"). For example: kernel BUG at drivers/ata/pata_macio.c:544! Oops: Exception in kernel mode, sig: 5 [#1] BE PAGE_SIZE=4K MMU=Hash SMP NR_CPUS=2 DEBUG_PAGEALLOC PowerMac ... NIP pata_macio_qc_prep+0xf4/0x190 LR pata_macio_qc_prep+0xfc/0x190 Call Trace: 0xc1421660 (unreliable) ata_qc_issue+0x14c/0x2d4 __ata_scsi_queuecmd+0x200/0x53c ata_scsi_queuecmd+0x50/0xe0 scsi_queue_rq+0x788/0xb1c __blk_mq_issue_directly+0x58/0xf4 blk_mq_plug_issue_direct+0x8c/0x1b4 blk_mq_flush_plug_list.part.0+0x584/0x5e0 __blk_flush_plug+0xf8/0x194 __submit_bio+0x1b8/0x2e0 submit_bio_noacct_nocheck+0x230/0x304 btrfs_work_helper+0x200/0x338 process_one_work+0x1a8/0x338 worker_thread+0x364/0x4c0 kthread+0x100/0x104 start_kernel_thread+0x10/0x14 That commit increased max_segment_size to 64KB, with the justification that the SCSI core was already using that size when PAGE_SIZE == 64KB, and that there was existing logic to split over-sized requests. However with a sufficiently large request, the splitting logic causes each sg to be split into two commands in the DMA table, leading to overflow of the DMA table, triggering the BUG_ON(). With default settings the bug doesn't trigger, because the request size is limited by max_sectors_kb == 1280, however max_sectors_kb can be increased, and apparently some distros do that by default using udev rules. Fix the bug for 4KB kernels by reverting to the old max_segment_size. For 64KB kernels the sg_tablesize needs to be halved, to allow for the possibility that each sg will be split into two. | |||||
CVE-2024-44980 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix opregion leak Being part o the display, ideally the setup and cleanup would be done by display itself. However this is a bigger refactor that needs to be done on both i915 and xe. For now, just fix the leak: unreferenced object 0xffff8881a0300008 (size 192): comm "modprobe", pid 4354, jiffies 4295647021 hex dump (first 32 bytes): 00 00 87 27 81 88 ff ff 18 80 9b 00 00 c9 ff ff ...'............ 18 81 9b 00 00 c9 ff ff 00 00 00 00 00 00 00 00 ................ backtrace (crc 99260e31): [<ffffffff823ce65b>] kmemleak_alloc+0x4b/0x80 [<ffffffff81493be2>] kmalloc_trace_noprof+0x312/0x3d0 [<ffffffffa1345679>] intel_opregion_setup+0x89/0x700 [xe] [<ffffffffa125bfaf>] xe_display_init_noirq+0x2f/0x90 [xe] [<ffffffffa1199ec3>] xe_device_probe+0x7a3/0xbf0 [xe] [<ffffffffa11f3713>] xe_pci_probe+0x333/0x5b0 [xe] [<ffffffff81af6be8>] local_pci_probe+0x48/0xb0 [<ffffffff81af8778>] pci_device_probe+0xc8/0x280 [<ffffffff81d09048>] really_probe+0xf8/0x390 [<ffffffff81d0937a>] __driver_probe_device+0x8a/0x170 [<ffffffff81d09503>] driver_probe_device+0x23/0xb0 [<ffffffff81d097b7>] __driver_attach+0xc7/0x190 [<ffffffff81d0628d>] bus_for_each_dev+0x7d/0xd0 [<ffffffff81d0851e>] driver_attach+0x1e/0x30 [<ffffffff81d07ac7>] bus_add_driver+0x117/0x250 (cherry picked from commit 6f4e43a2f771b737d991142ec4f6d4b7ff31fbb4) | |||||
CVE-2024-44984 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix double DMA unmapping for XDP_REDIRECT Remove the dma_unmap_page_attrs() call in the driver's XDP_REDIRECT code path. This should have been removed when we let the page pool handle the DMA mapping. This bug causes the warning: WARNING: CPU: 7 PID: 59 at drivers/iommu/dma-iommu.c:1198 iommu_dma_unmap_page+0xd5/0x100 CPU: 7 PID: 59 Comm: ksoftirqd/7 Tainted: G W 6.8.0-1010-gcp #11-Ubuntu Hardware name: Dell Inc. PowerEdge R7525/0PYVT1, BIOS 2.15.2 04/02/2024 RIP: 0010:iommu_dma_unmap_page+0xd5/0x100 Code: 89 ee 48 89 df e8 cb f2 69 ff 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d 31 c0 31 d2 31 c9 31 f6 31 ff 45 31 c0 e9 ab 17 71 00 <0f> 0b 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d 31 c0 31 d2 31 c9 RSP: 0018:ffffab1fc0597a48 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff99ff838280c8 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffab1fc0597a78 R08: 0000000000000002 R09: ffffab1fc0597c1c R10: ffffab1fc0597cd3 R11: ffff99ffe375acd8 R12: 00000000e65b9000 R13: 0000000000000050 R14: 0000000000001000 R15: 0000000000000002 FS: 0000000000000000(0000) GS:ffff9a06efb80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000565c34c37210 CR3: 00000005c7e3e000 CR4: 0000000000350ef0 ? show_regs+0x6d/0x80 ? __warn+0x89/0x150 ? iommu_dma_unmap_page+0xd5/0x100 ? report_bug+0x16a/0x190 ? handle_bug+0x51/0xa0 ? exc_invalid_op+0x18/0x80 ? iommu_dma_unmap_page+0xd5/0x100 ? iommu_dma_unmap_page+0x35/0x100 dma_unmap_page_attrs+0x55/0x220 ? bpf_prog_4d7e87c0d30db711_xdp_dispatcher+0x64/0x9f bnxt_rx_xdp+0x237/0x520 [bnxt_en] bnxt_rx_pkt+0x640/0xdd0 [bnxt_en] __bnxt_poll_work+0x1a1/0x3d0 [bnxt_en] bnxt_poll+0xaa/0x1e0 [bnxt_en] __napi_poll+0x33/0x1e0 net_rx_action+0x18a/0x2f0 | |||||
CVE-2024-44994 | 1 Linux | 1 Linux Kernel | 2024-10-10 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: iommu: Restore lost return in iommu_report_device_fault() When iommu_report_device_fault gets called with a partial fault it is supposed to collect the fault into the group and then return. Instead the return was accidently deleted which results in trying to process the fault and an eventual crash. Deleting the return was a typo, put it back. | |||||
CVE-2024-38259 | 1 Microsoft | 6 Windows 11 21h2, Windows 11 22h2, Windows 11 23h2 and 3 more | 2024-10-10 | N/A | 8.8 HIGH |
Microsoft Management Console Remote Code Execution Vulnerability | |||||
CVE-2024-27861 | 1 Apple | 1 Macos | 2024-10-10 | N/A | 5.5 MEDIUM |
The issue was addressed with improved memory handling. This issue is fixed in macOS Sequoia 15. An application may be able to read restricted memory. | |||||
CVE-2024-46834 | 1 Linux | 1 Linux Kernel | 2024-10-09 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ethtool: fail closed if we can't get max channel used in indirection tables Commit 0d1b7d6c9274 ("bnxt: fix crashes when reducing ring count with active RSS contexts") proves that allowing indirection table to contain channels with out of bounds IDs may lead to crashes. Currently the max channel check in the core gets skipped if driver can't fetch the indirection table or when we can't allocate memory. Both of those conditions should be extremely rare but if they do happen we should try to be safe and fail the channel change. | |||||
CVE-2024-46832 | 1 Linux | 1 Linux Kernel | 2024-10-09 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: MIPS: cevt-r4k: Don't call get_c0_compare_int if timer irq is installed This avoids warning: [ 0.118053] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:283 Caused by get_c0_compare_int on secondary CPU. We also skipped saving IRQ number to struct clock_event_device *cd as it's never used by clockevent core, as per comments it's only meant for "non CPU local devices". | |||||
CVE-2024-46837 | 1 Linux | 1 Linux Kernel | 2024-10-09 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Restrict high priorities on group_create We were allowing any users to create a high priority group without any permission checks. As a result, this was allowing possible denial of service. We now only allow the DRM master or users with the CAP_SYS_NICE capability to set higher priorities than PANTHOR_GROUP_PRIORITY_MEDIUM. As the sole user of that uAPI lives in Mesa and hardcode a value of MEDIUM [1], this should be safe to do. Additionally, as those checks are performed at the ioctl level, panthor_group_create now only check for priority level validity. [1]https://gitlab.freedesktop.org/mesa/mesa/-/blob/f390835074bdf162a63deb0311d1a6de527f9f89/src/gallium/drivers/panfrost/pan_csf.c#L1038 | |||||
CVE-2024-46838 | 1 Linux | 1 Linux Kernel | 2024-10-09 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: userfaultfd: don't BUG_ON() if khugepaged yanks our page table Since khugepaged was changed to allow retracting page tables in file mappings without holding the mmap lock, these BUG_ON()s are wrong - get rid of them. We could also remove the preceding "if (unlikely(...))" block, but then we could reach pte_offset_map_lock() with transhuge pages not just for file mappings but also for anonymous mappings - which would probably be fine but I think is not necessarily expected. | |||||
CVE-2024-45001 | 1 Linux | 1 Linux Kernel | 2024-10-09 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: net: mana: Fix RX buf alloc_size alignment and atomic op panic The MANA driver's RX buffer alloc_size is passed into napi_build_skb() to create SKB. skb_shinfo(skb) is located at the end of skb, and its alignment is affected by the alloc_size passed into napi_build_skb(). The size needs to be aligned properly for better performance and atomic operations. Otherwise, on ARM64 CPU, for certain MTU settings like 4000, atomic operations may panic on the skb_shinfo(skb)->dataref due to alignment fault. To fix this bug, add proper alignment to the alloc_size calculation. Sample panic info: [ 253.298819] Unable to handle kernel paging request at virtual address ffff000129ba5cce [ 253.300900] Mem abort info: [ 253.301760] ESR = 0x0000000096000021 [ 253.302825] EC = 0x25: DABT (current EL), IL = 32 bits [ 253.304268] SET = 0, FnV = 0 [ 253.305172] EA = 0, S1PTW = 0 [ 253.306103] FSC = 0x21: alignment fault Call trace: __skb_clone+0xfc/0x198 skb_clone+0x78/0xe0 raw6_local_deliver+0xfc/0x228 ip6_protocol_deliver_rcu+0x80/0x500 ip6_input_finish+0x48/0x80 ip6_input+0x48/0xc0 ip6_sublist_rcv_finish+0x50/0x78 ip6_sublist_rcv+0x1cc/0x2b8 ipv6_list_rcv+0x100/0x150 __netif_receive_skb_list_core+0x180/0x220 netif_receive_skb_list_internal+0x198/0x2a8 __napi_poll+0x138/0x250 net_rx_action+0x148/0x330 handle_softirqs+0x12c/0x3a0 | |||||
CVE-2024-44991 | 1 Linux | 1 Linux Kernel | 2024-10-09 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: tcp: prevent concurrent execution of tcp_sk_exit_batch Its possible that two threads call tcp_sk_exit_batch() concurrently, once from the cleanup_net workqueue, once from a task that failed to clone a new netns. In the latter case, error unwinding calls the exit handlers in reverse order for the 'failed' netns. tcp_sk_exit_batch() calls tcp_twsk_purge(). Problem is that since commit b099ce2602d8 ("net: Batch inet_twsk_purge"), this function picks up twsk in any dying netns, not just the one passed in via exit_batch list. This means that the error unwind of setup_net() can "steal" and destroy timewait sockets belonging to the exiting netns. This allows the netns exit worker to proceed to call WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount)); without the expected 1 -> 0 transition, which then splats. At same time, error unwind path that is also running inet_twsk_purge() will splat as well: WARNING: .. at lib/refcount.c:31 refcount_warn_saturate+0x1ed/0x210 ... refcount_dec include/linux/refcount.h:351 [inline] inet_twsk_kill+0x758/0x9c0 net/ipv4/inet_timewait_sock.c:70 inet_twsk_deschedule_put net/ipv4/inet_timewait_sock.c:221 inet_twsk_purge+0x725/0x890 net/ipv4/inet_timewait_sock.c:304 tcp_sk_exit_batch+0x1c/0x170 net/ipv4/tcp_ipv4.c:3522 ops_exit_list+0x128/0x180 net/core/net_namespace.c:178 setup_net+0x714/0xb40 net/core/net_namespace.c:375 copy_net_ns+0x2f0/0x670 net/core/net_namespace.c:508 create_new_namespaces+0x3ea/0xb10 kernel/nsproxy.c:110 ... because refcount_dec() of tw_refcount unexpectedly dropped to 0. This doesn't seem like an actual bug (no tw sockets got lost and I don't see a use-after-free) but as erroneous trigger of debug check. Add a mutex to force strict ordering: the task that calls tcp_twsk_purge() blocks other task from doing final _dec_and_test before mutex-owner has removed all tw sockets of dying netns. |