Total
11148 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2024-39384 | 3 Adobe, Apple, Microsoft | 3 Premiere Pro, Macos, Windows | 2024-09-16 | N/A | 7.8 HIGH |
Premiere Pro versions 24.5, 23.6.8 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
CVE-2024-39377 | 3 Adobe, Apple, Microsoft | 3 Media Encoder, Macos, Windows | 2024-09-16 | N/A | 7.8 HIGH |
Media Encoder versions 24.5, 23.6.8 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
CVE-2024-43760 | 3 Adobe, Apple, Microsoft | 3 Photoshop, Macos, Windows | 2024-09-13 | N/A | 7.8 HIGH |
Photoshop Desktop versions 24.7.4, 25.11 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
CVE-2024-45108 | 3 Adobe, Apple, Microsoft | 3 Photoshop, Macos, Windows | 2024-09-13 | N/A | 7.8 HIGH |
Photoshop Desktop versions 24.7.4, 25.11 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
CVE-2024-45109 | 3 Adobe, Apple, Microsoft | 3 Photoshop, Macos, Windows | 2024-09-13 | N/A | 7.8 HIGH |
Photoshop Desktop versions 24.7.4, 25.11 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
CVE-2024-39381 | 3 Adobe, Apple, Microsoft | 3 After Effects, Macos, Windows | 2024-09-13 | N/A | 7.8 HIGH |
After Effects versions 23.6.6, 24.5 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
CVE-2024-41859 | 3 Adobe, Apple, Microsoft | 3 After Effects, Macos, Windows | 2024-09-13 | N/A | 7.8 HIGH |
After Effects versions 23.6.6, 24.5 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. | |||||
CVE-2024-45020 | 1 Linux | 1 Linux Kernel | 2024-09-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix a kernel verifier crash in stacksafe() Daniel Hodges reported a kernel verifier crash when playing with sched-ext. Further investigation shows that the crash is due to invalid memory access in stacksafe(). More specifically, it is the following code: if (exact != NOT_EXACT && old->stack[spi].slot_type[i % BPF_REG_SIZE] != cur->stack[spi].slot_type[i % BPF_REG_SIZE]) return false; The 'i' iterates old->allocated_stack. If cur->allocated_stack < old->allocated_stack the out-of-bound access will happen. To fix the issue add 'i >= cur->allocated_stack' check such that if the condition is true, stacksafe() should fail. Otherwise, cur->stack[spi].slot_type[i % BPF_REG_SIZE] memory access is legal. | |||||
CVE-2024-45022 | 1 Linux | 1 Linux Kernel | 2024-09-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: mm/vmalloc: fix page mapping if vm_area_alloc_pages() with high order fallback to order 0 The __vmap_pages_range_noflush() assumes its argument pages** contains pages with the same page shift. However, since commit e9c3cda4d86e ("mm, vmalloc: fix high order __GFP_NOFAIL allocations"), if gfp_flags includes __GFP_NOFAIL with high order in vm_area_alloc_pages() and page allocation failed for high order, the pages** may contain two different page shifts (high order and order-0). This could lead __vmap_pages_range_noflush() to perform incorrect mappings, potentially resulting in memory corruption. Users might encounter this as follows (vmap_allow_huge = true, 2M is for PMD_SIZE): kvmalloc(2M, __GFP_NOFAIL|GFP_X) __vmalloc_node_range_noprof(vm_flags=VM_ALLOW_HUGE_VMAP) vm_area_alloc_pages(order=9) ---> order-9 allocation failed and fallback to order-0 vmap_pages_range() vmap_pages_range_noflush() __vmap_pages_range_noflush(page_shift = 21) ----> wrong mapping happens We can remove the fallback code because if a high-order allocation fails, __vmalloc_node_range_noprof() will retry with order-0. Therefore, it is unnecessary to fallback to order-0 here. Therefore, fix this by removing the fallback code. | |||||
CVE-2024-45023 | 1 Linux | 1 Linux Kernel | 2024-09-13 | N/A | 7.1 HIGH |
In the Linux kernel, the following vulnerability has been resolved: md/raid1: Fix data corruption for degraded array with slow disk read_balance() will avoid reading from slow disks as much as possible, however, if valid data only lands in slow disks, and a new normal disk is still in recovery, unrecovered data can be read: raid1_read_request read_balance raid1_should_read_first -> return false choose_best_rdev -> normal disk is not recovered, return -1 choose_bb_rdev -> missing the checking of recovery, return the normal disk -> read unrecovered data Root cause is that the checking of recovery is missing in choose_bb_rdev(). Hence add such checking to fix the problem. Also fix similar problem in choose_slow_rdev(). | |||||
CVE-2024-45025 | 1 Linux | 1 Linux Kernel | 2024-09-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: fix bitmap corruption on close_range() with CLOSE_RANGE_UNSHARE copy_fd_bitmaps(new, old, count) is expected to copy the first count/BITS_PER_LONG bits from old->full_fds_bits[] and fill the rest with zeroes. What it does is copying enough words (BITS_TO_LONGS(count/BITS_PER_LONG)), then memsets the rest. That works fine, *if* all bits past the cutoff point are clear. Otherwise we are risking garbage from the last word we'd copied. For most of the callers that is true - expand_fdtable() has count equal to old->max_fds, so there's no open descriptors past count, let alone fully occupied words in ->open_fds[], which is what bits in ->full_fds_bits[] correspond to. The other caller (dup_fd()) passes sane_fdtable_size(old_fdt, max_fds), which is the smallest multiple of BITS_PER_LONG that covers all opened descriptors below max_fds. In the common case (copying on fork()) max_fds is ~0U, so all opened descriptors will be below it and we are fine, by the same reasons why the call in expand_fdtable() is safe. Unfortunately, there is a case where max_fds is less than that and where we might, indeed, end up with junk in ->full_fds_bits[] - close_range(from, to, CLOSE_RANGE_UNSHARE) with * descriptor table being currently shared * 'to' being above the current capacity of descriptor table * 'from' being just under some chunk of opened descriptors. In that case we end up with observably wrong behaviour - e.g. spawn a child with CLONE_FILES, get all descriptors in range 0..127 open, then close_range(64, ~0U, CLOSE_RANGE_UNSHARE) and watch dup(0) ending up with descriptor #128, despite #64 being observably not open. The minimally invasive fix would be to deal with that in dup_fd(). If this proves to add measurable overhead, we can go that way, but let's try to fix copy_fd_bitmaps() first. * new helper: bitmap_copy_and_expand(to, from, bits_to_copy, size). * make copy_fd_bitmaps() take the bitmap size in words, rather than bits; it's 'count' argument is always a multiple of BITS_PER_LONG, so we are not losing any information, and that way we can use the same helper for all three bitmaps - compiler will see that count is a multiple of BITS_PER_LONG for the large ones, so it'll generate plain memcpy()+memset(). Reproducer added to tools/testing/selftests/core/close_range_test.c | |||||
CVE-2024-45026 | 1 Linux | 1 Linux Kernel | 2024-09-13 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: s390/dasd: fix error recovery leading to data corruption on ESE devices Extent Space Efficient (ESE) or thin provisioned volumes need to be formatted on demand during usual IO processing. The dasd_ese_needs_format function checks for error codes that signal the non existence of a proper track format. The check for incorrect length is to imprecise since other error cases leading to transport of insufficient data also have this flag set. This might lead to data corruption in certain error cases for example during a storage server warmstart. Fix by removing the check for incorrect length and replacing by explicitly checking for invalid track format in transport mode. Also remove the check for file protected since this is not a valid ESE handling case. | |||||
CVE-2024-45030 | 1 Linux | 1 Linux Kernel | 2024-09-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: igb: cope with large MAX_SKB_FRAGS Sabrina reports that the igb driver does not cope well with large MAX_SKB_FRAG values: setting MAX_SKB_FRAG to 45 causes payload corruption on TX. An easy reproducer is to run ssh to connect to the machine. With MAX_SKB_FRAGS=17 it works, with MAX_SKB_FRAGS=45 it fails. This has been reported originally in https://bugzilla.redhat.com/show_bug.cgi?id=2265320 The root cause of the issue is that the driver does not take into account properly the (possibly large) shared info size when selecting the ring layout, and will try to fit two packets inside the same 4K page even when the 1st fraglist will trump over the 2nd head. Address the issue by checking if 2K buffers are insufficient. | |||||
CVE-2024-8636 | 1 Google | 1 Chrome | 2024-09-13 | N/A | 8.8 HIGH |
Heap buffer overflow in Skia in Google Chrome prior to 128.0.6613.137 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) | |||||
CVE-2024-23497 | 1 Intel | 1 Ethernet 800 Series Controllers Driver | 2024-09-12 | N/A | 8.8 HIGH |
Out-of-bounds write in Linux kernel mode driver for some Intel(R) Ethernet Network Controllers and Adapters before version 28.3 may allow an authenticated user to potentially enable escalation of privilege via local access. | |||||
CVE-2022-48923 | 1 Linux | 1 Linux Kernel | 2024-09-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: btrfs: prevent copying too big compressed lzo segment Compressed length can be corrupted to be a lot larger than memory we have allocated for buffer. This will cause memcpy in copy_compressed_segment to write outside of allocated memory. This mostly results in stuck read syscall but sometimes when using btrfs send can get #GP kernel: general protection fault, probably for non-canonical address 0x841551d5c1000: 0000 [#1] PREEMPT SMP NOPTI kernel: CPU: 17 PID: 264 Comm: kworker/u256:7 Tainted: P OE 5.17.0-rc2-1 #12 kernel: Workqueue: btrfs-endio btrfs_work_helper [btrfs] kernel: RIP: 0010:lzo_decompress_bio (./include/linux/fortify-string.h:225 fs/btrfs/lzo.c:322 fs/btrfs/lzo.c:394) btrfs Code starting with the faulting instruction =========================================== 0:* 48 8b 06 mov (%rsi),%rax <-- trapping instruction 3: 48 8d 79 08 lea 0x8(%rcx),%rdi 7: 48 83 e7 f8 and $0xfffffffffffffff8,%rdi b: 48 89 01 mov %rax,(%rcx) e: 44 89 f0 mov %r14d,%eax 11: 48 8b 54 06 f8 mov -0x8(%rsi,%rax,1),%rdx kernel: RSP: 0018:ffffb110812efd50 EFLAGS: 00010212 kernel: RAX: 0000000000001000 RBX: 000000009ca264c8 RCX: ffff98996e6d8ff8 kernel: RDX: 0000000000000064 RSI: 000841551d5c1000 RDI: ffffffff9500435d kernel: RBP: ffff989a3be856c0 R08: 0000000000000000 R09: 0000000000000000 kernel: R10: 0000000000000000 R11: 0000000000001000 R12: ffff98996e6d8000 kernel: R13: 0000000000000008 R14: 0000000000001000 R15: 000841551d5c1000 kernel: FS: 0000000000000000(0000) GS:ffff98a09d640000(0000) knlGS:0000000000000000 kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 kernel: CR2: 00001e9f984d9ea8 CR3: 000000014971a000 CR4: 00000000003506e0 kernel: Call Trace: kernel: <TASK> kernel: end_compressed_bio_read (fs/btrfs/compression.c:104 fs/btrfs/compression.c:1363 fs/btrfs/compression.c:323) btrfs kernel: end_workqueue_fn (fs/btrfs/disk-io.c:1923) btrfs kernel: btrfs_work_helper (fs/btrfs/async-thread.c:326) btrfs kernel: process_one_work (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:212 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2312) kernel: worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2455) kernel: ? process_one_work (kernel/workqueue.c:2397) kernel: kthread (kernel/kthread.c:377) kernel: ? kthread_complete_and_exit (kernel/kthread.c:332) kernel: ret_from_fork (arch/x86/entry/entry_64.S:301) kernel: </TASK> | |||||
CVE-2024-44073 | 1 Rust-bitcoin | 1 Miniscript | 2024-09-06 | N/A | 7.5 HIGH |
The Miniscript (aka rust-miniscript) library before 12.2.0 for Rust allows stack consumption because it does not properly track tree depth. | |||||
CVE-2024-8387 | 1 Mozilla | 3 Firefox, Firefox Esr, Thunderbird | 2024-09-06 | N/A | 9.8 CRITICAL |
Memory safety bugs present in Firefox 129, Firefox ESR 128.1, and Thunderbird 128.1. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 130, Firefox ESR < 128.2, and Thunderbird < 128.2. | |||||
CVE-2024-8384 | 1 Mozilla | 2 Firefox, Firefox Esr | 2024-09-06 | N/A | 9.8 CRITICAL |
The JavaScript garbage collector could mis-color cross-compartment objects if OOM conditions were detected at the right point between two passes. This could have led to memory corruption. This vulnerability affects Firefox < 130, Firefox ESR < 128.2, Firefox ESR < 115.15, Thunderbird < 128.2, and Thunderbird < 115.15. | |||||
CVE-2024-41879 | 2 Adobe, Microsoft | 2 Acrobat Reader, Edge | 2024-09-05 | N/A | 7.8 HIGH |
Acrobat Reader versions 127.0.2651.105 and earlier are affected by an out-of-bounds write vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |