Total
7506 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2024-53150 | 1 Linux | 1 Linux Kernel | 2025-10-24 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix out of bounds reads when finding clock sources The current USB-audio driver code doesn't check bLength of each descriptor at traversing for clock descriptors. That is, when a device provides a bogus descriptor with a shorter bLength, the driver might hit out-of-bounds reads. For addressing it, this patch adds sanity checks to the validator functions for the clock descriptor traversal. When the descriptor length is shorter than expected, it's skipped in the loop. For the clock source and clock multiplier descriptors, we can just check bLength against the sizeof() of each descriptor type. OTOH, the clock selector descriptor of UAC2 and UAC3 has an array of bNrInPins elements and two more fields at its tail, hence those have to be checked in addition to the sizeof() check. | |||||
| CVE-2025-55094 | 1 Eclipse | 1 Threadx Netx Duo | 2025-10-24 | N/A | 7.5 HIGH |
| In NetX Duo before 6.4.4, the networking support module for Eclipse Foundation ThreadX, there was a potential out of bound read issue in _nx_icmpv6_validate_options() when handling a packet with ICMP6 options. | |||||
| CVE-2025-55087 | 1 Eclipse | 1 Threadx Netx Duo | 2025-10-24 | N/A | 7.5 HIGH |
| In NextX Duo's snmp addon versions before 6.4.4, a part of the Eclipse Foundation ThreadX, an attacker could cause an out-of-bound read by a crafted SNMPv3 security parameters. | |||||
| CVE-2025-55093 | 1 Eclipse | 1 Threadx Netx Duo | 2025-10-24 | N/A | 5.3 MEDIUM |
| In NetX Duo before 6.4.4, the networking support module for Eclipse Foundation ThreadX, there was a potential out of bound read issue in _nx_ipv4_packet_receive() when handling unicast DHCP messages that could cause corruption of 4 bytes of memory. | |||||
| CVE-2025-55092 | 1 Eclipse | 1 Threadx Netx Duo | 2025-10-24 | N/A | 5.3 MEDIUM |
| In Eclipse Foundation NetX Duo before 6.4.4, the networking support module for Eclipse Foundation ThreadX, there was a potential out of bound read issue in _nx_ipv4_option_process() when processing an IPv4 packet with the timestamp option. | |||||
| CVE-2022-49706 | 1 Linux | 1 Linux Kernel | 2025-10-24 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: zonefs: fix zonefs_iomap_begin() for reads If a readahead is issued to a sequential zone file with an offset exactly equal to the current file size, the iomap type is set to IOMAP_UNWRITTEN, which will prevent an IO, but the iomap length is calculated as 0. This causes a WARN_ON() in iomap_iter(): [17309.548939] WARNING: CPU: 3 PID: 2137 at fs/iomap/iter.c:34 iomap_iter+0x9cf/0xe80 [...] [17309.650907] RIP: 0010:iomap_iter+0x9cf/0xe80 [...] [17309.754560] Call Trace: [17309.757078] <TASK> [17309.759240] ? lock_is_held_type+0xd8/0x130 [17309.763531] iomap_readahead+0x1a8/0x870 [17309.767550] ? iomap_read_folio+0x4c0/0x4c0 [17309.771817] ? lockdep_hardirqs_on_prepare+0x400/0x400 [17309.778848] ? lock_release+0x370/0x750 [17309.784462] ? folio_add_lru+0x217/0x3f0 [17309.790220] ? reacquire_held_locks+0x4e0/0x4e0 [17309.796543] read_pages+0x17d/0xb60 [17309.801854] ? folio_add_lru+0x238/0x3f0 [17309.807573] ? readahead_expand+0x5f0/0x5f0 [17309.813554] ? policy_node+0xb5/0x140 [17309.819018] page_cache_ra_unbounded+0x27d/0x450 [17309.825439] filemap_get_pages+0x500/0x1450 [17309.831444] ? filemap_add_folio+0x140/0x140 [17309.837519] ? lock_is_held_type+0xd8/0x130 [17309.843509] filemap_read+0x28c/0x9f0 [17309.848953] ? zonefs_file_read_iter+0x1ea/0x4d0 [zonefs] [17309.856162] ? trace_contention_end+0xd6/0x130 [17309.862416] ? __mutex_lock+0x221/0x1480 [17309.868151] ? zonefs_file_read_iter+0x166/0x4d0 [zonefs] [17309.875364] ? filemap_get_pages+0x1450/0x1450 [17309.881647] ? __mutex_unlock_slowpath+0x15e/0x620 [17309.888248] ? wait_for_completion_io_timeout+0x20/0x20 [17309.895231] ? lock_is_held_type+0xd8/0x130 [17309.901115] ? lock_is_held_type+0xd8/0x130 [17309.906934] zonefs_file_read_iter+0x356/0x4d0 [zonefs] [17309.913750] new_sync_read+0x2d8/0x520 [17309.919035] ? __x64_sys_lseek+0x1d0/0x1d0 Furthermore, this causes iomap_readahead() to loop forever as iomap_readahead_iter() always returns 0, making no progress. Fix this by treating reads after the file size as access to holes, setting the iomap type to IOMAP_HOLE, the iomap addr to IOMAP_NULL_ADDR and using the length argument as is for the iomap length. To simplify the code with this change, zonefs_iomap_begin() is split into the read variant, zonefs_read_iomap_begin() and zonefs_read_iomap_ops, and the write variant, zonefs_write_iomap_begin() and zonefs_write_iomap_ops. | |||||
| CVE-2022-49674 | 1 Linux | 1 Linux Kernel | 2025-10-24 | N/A | 7.1 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: dm raid: fix accesses beyond end of raid member array On dm-raid table load (using raid_ctr), dm-raid allocates an array rs->devs[rs->raid_disks] for the raid device members. rs->raid_disks is defined by the number of raid metadata and image tupples passed into the target's constructor. In the case of RAID layout changes being requested, that number can be different from the current number of members for existing raid sets as defined in their superblocks. Example RAID layout changes include: - raid1 legs being added/removed - raid4/5/6/10 number of stripes changed (stripe reshaping) - takeover to higher raid level (e.g. raid5 -> raid6) When accessing array members, rs->raid_disks must be used in control loops instead of the potentially larger value in rs->md.raid_disks. Otherwise it will cause memory access beyond the end of the rs->devs array. Fix this by changing code that is prone to out-of-bounds access. Also fix validate_raid_redundancy() to validate all devices that are added. Also, use braces to help clean up raid_iterate_devices(). The out-of-bounds memory accesses was discovered using KASAN. This commit was verified to pass all LVM2 RAID tests (with KASAN enabled). | |||||
| CVE-2025-55086 | 1 Eclipse | 1 Threadx Netx Duo | 2025-10-24 | N/A | 9.8 CRITICAL |
| In NetXDuo version before 6.4.4, a networking support module for Eclipse Foundation ThreadX, in the DHCPV6 client there was an unchecked index extracting the server DUID from the server reply. With a crafted packet, an attacker could cause an out of memory read. | |||||
| CVE-2025-55681 | 1 Microsoft | 11 Windows 10 1809, Windows 10 21h2, Windows 10 22h2 and 8 more | 2025-10-24 | N/A | 7.0 HIGH |
| Out-of-bounds read in Windows DWM allows an authorized attacker to elevate privileges locally. | |||||
| CVE-2024-0519 | 3 Couchbase, Fedoraproject, Google | 3 Couchbase Server, Fedora, Chrome | 2025-10-24 | N/A | 8.8 HIGH |
| Out of bounds memory access in V8 in Google Chrome prior to 120.0.6099.224 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) | |||||
| CVE-2025-5419 | 2 Google, Microsoft | 2 Chrome, Edge Chromium | 2025-10-24 | N/A | 8.8 HIGH |
| Out of bounds read and write in V8 in Google Chrome prior to 137.0.7151.68 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) | |||||
| CVE-2025-49796 | 2025-10-24 | N/A | 9.1 CRITICAL | ||
| A vulnerability was found in libxml2. Processing certain sch:name elements from the input XML file can trigger a memory corruption issue. This flaw allows an attacker to craft a malicious XML input file that can lead libxml to crash, resulting in a denial of service or other possible undefined behavior due to sensitive data being corrupted in memory. | |||||
| CVE-2025-5318 | 2 Libssh, Redhat | 3 Libssh, Enterprise Linux, Openshift Container Platform | 2025-10-23 | N/A | 5.4 MEDIUM |
| A flaw was found in the libssh library in versions less than 0.11.2. An out-of-bounds read can be triggered in the sftp_handle function due to an incorrect comparison check that permits the function to access memory beyond the valid handle list and to return an invalid pointer, which is used in further processing. This vulnerability allows an authenticated remote attacker to potentially read unintended memory regions, exposing sensitive information or affect service behavior. | |||||
| CVE-2025-11840 | 1 Gnu | 1 Binutils | 2025-10-23 | 1.7 LOW | 3.3 LOW |
| A weakness has been identified in GNU Binutils 2.45. The affected element is the function vfinfo of the file ldmisc.c. Executing manipulation can lead to out-of-bounds read. The attack can only be executed locally. The exploit has been made available to the public and could be exploited. This patch is called 16357. It is best practice to apply a patch to resolve this issue. | |||||
| CVE-2025-23345 | 2025-10-23 | N/A | 4.4 MEDIUM | ||
| NVIDIA Display Driver for Windows and Linux contains a vulnerability in a video decoder, where an attacker might cause an out-of-bounds read. A successful exploit of this vulnerability might lead to information disclosure or denial of service. | |||||
| CVE-2023-42916 | 4 Apple, Debian, Fedoraproject and 1 more | 7 Ipados, Iphone Os, Macos and 4 more | 2025-10-23 | N/A | 6.5 MEDIUM |
| An out-of-bounds read was addressed with improved input validation. This issue is fixed in iOS 17.1.2 and iPadOS 17.1.2, macOS Sonoma 14.1.2, Safari 17.1.2. Processing web content may disclose sensitive information. Apple is aware of a report that this issue may have been exploited against versions of iOS before iOS 16.7.1. | |||||
| CVE-2023-28204 | 2 Apple, Webkitgtk | 7 Ipados, Iphone Os, Macos and 4 more | 2025-10-23 | N/A | 6.5 MEDIUM |
| An out-of-bounds read was addressed with improved input validation. This issue is fixed in watchOS 9.5, tvOS 16.5, macOS Ventura 13.4, iOS 15.7.6 and iPadOS 15.7.6, Safari 16.5, iOS 16.5 and iPadOS 16.5. Processing web content may disclose sensitive information. Apple is aware of a report that this issue may have been actively exploited. | |||||
| CVE-2024-57998 | 1 Linux | 1 Linux Kernel | 2025-10-23 | N/A | 7.8 HIGH |
| In the Linux kernel, the following vulnerability has been resolved: OPP: add index check to assert to avoid buffer overflow in _read_freq() Pass the freq index to the assert function to make sure we do not read a freq out of the opp->rates[] table when called from the indexed variants: dev_pm_opp_find_freq_exact_indexed() or dev_pm_opp_find_freq_ceil/floor_indexed(). Add a secondary parameter to the assert function, unused for assert_single_clk() then add assert_clk_index() which will check for the clock index when called from the _indexed() find functions. | |||||
| CVE-2025-53065 | 1 Oracle | 1 Peoplesoft Enterprise Peopletools | 2025-10-23 | N/A | 5.4 MEDIUM |
| Vulnerability in the PeopleSoft Enterprise PeopleTools product of Oracle PeopleSoft (component: PIA Core Technology). Supported versions that are affected are 8.60, 8.61 and 8.62. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise PeopleSoft Enterprise PeopleTools. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of PeopleSoft Enterprise PeopleTools accessible data as well as unauthorized read access to a subset of PeopleSoft Enterprise PeopleTools accessible data. CVSS 3.1 Base Score 5.4 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N). | |||||
| CVE-2025-53048 | 1 Oracle | 1 Peoplesoft Enterprise Peopletools | 2025-10-23 | N/A | 5.4 MEDIUM |
| Vulnerability in the PeopleSoft Enterprise PeopleTools product of Oracle PeopleSoft (component: Rich Text Editor). Supported versions that are affected are 8.60, 8.61 and 8.62. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise PeopleSoft Enterprise PeopleTools. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in PeopleSoft Enterprise PeopleTools, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of PeopleSoft Enterprise PeopleTools accessible data as well as unauthorized read access to a subset of PeopleSoft Enterprise PeopleTools accessible data. CVSS 3.1 Base Score 5.4 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N). | |||||
