Total
95050 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2022-50556 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: drm: Fix potential null-ptr-deref due to drmm_mode_config_init() drmm_mode_config_init() will call drm_mode_create_standard_properties() and won't check the ret value. When drm_mode_create_standard_properties() failed due to alloc, property will be a NULL pointer and may causes the null-ptr-deref. Fix the null-ptr-deref by adding the ret value check. Found null-ptr-deref while testing insert module bochs: general protection fault, probably for non-canonical address 0xdffffc000000000c: 0000 [#1] SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000060-0x0000000000000067] CPU: 3 PID: 249 Comm: modprobe Not tainted 6.1.0-rc1+ #364 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014 RIP: 0010:drm_object_attach_property+0x73/0x3c0 [drm] Call Trace: <TASK> __drm_connector_init+0xb6c/0x1100 [drm] bochs_pci_probe.cold.11+0x4cb/0x7fe [bochs] pci_device_probe+0x17d/0x340 really_probe+0x1db/0x5d0 __driver_probe_device+0x1e7/0x250 driver_probe_device+0x4a/0x120 __driver_attach+0xcd/0x2c0 bus_for_each_dev+0x11a/0x1b0 bus_add_driver+0x3d7/0x500 driver_register+0x18e/0x320 do_one_initcall+0xc4/0x3e0 do_init_module+0x1b4/0x630 load_module+0x5dca/0x7230 __do_sys_finit_module+0x100/0x170 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7ff65af9f839 | |||||
| CVE-2022-50570 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: platform/chrome: fix memory corruption in ioctl If "s_mem.bytes" is larger than the buffer size it leads to memory corruption. | |||||
| CVE-2025-41110 | 2025-10-22 | N/A | N/A | ||
| Encrypted WiFi and SSH credentials were found in the Ghost Robotics Vision 60 v0.27.2 APK. This vulnerability allows an attacker to connect to the robot's WiFi and view all its data, as it runs on ROS 2 without default authentication. In addition, the attacker can connect via SSH and gain full control of the robot, which could cause physical damage to the robot itself or its environment. | |||||
| CVE-2023-53696 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix memory leak in qla2x00_probe_one() There is a memory leak reported by kmemleak: unreferenced object 0xffffc900003f0000 (size 12288): comm "modprobe", pid 19117, jiffies 4299751452 (age 42490.264s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000629261a8>] __vmalloc_node_range+0xe56/0x1110 [<0000000001906886>] __vmalloc_node+0xbd/0x150 [<000000005bb4dc34>] vmalloc+0x25/0x30 [<00000000a2dc1194>] qla2x00_create_host+0x7a0/0xe30 [qla2xxx] [<0000000062b14b47>] qla2x00_probe_one+0x2eb8/0xd160 [qla2xxx] [<00000000641ccc04>] local_pci_probe+0xeb/0x1a0 The root cause is traced to an error-handling path in qla2x00_probe_one() when the adapter "base_vha" initialize failed. The fab_scan_rp "scan.l" is used to record the port information and it is allocated in qla2x00_create_host(). However, it is not released in the error handling path "probe_failed". Fix this by freeing the memory of "scan.l" when an error occurs in the adapter initialization process. | |||||
| CVE-2023-53692 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: ext4: fix use-after-free read in ext4_find_extent for bigalloc + inline Syzbot found the following issue: loop0: detected capacity change from 0 to 2048 EXT4-fs (loop0): mounted filesystem 00000000-0000-0000-0000-000000000000 without journal. Quota mode: none. ================================================================== BUG: KASAN: use-after-free in ext4_ext_binsearch_idx fs/ext4/extents.c:768 [inline] BUG: KASAN: use-after-free in ext4_find_extent+0x76e/0xd90 fs/ext4/extents.c:931 Read of size 4 at addr ffff888073644750 by task syz-executor420/5067 CPU: 0 PID: 5067 Comm: syz-executor420 Not tainted 6.2.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x290 lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:306 print_report+0x107/0x1f0 mm/kasan/report.c:417 kasan_report+0xcd/0x100 mm/kasan/report.c:517 ext4_ext_binsearch_idx fs/ext4/extents.c:768 [inline] ext4_find_extent+0x76e/0xd90 fs/ext4/extents.c:931 ext4_clu_mapped+0x117/0x970 fs/ext4/extents.c:5809 ext4_insert_delayed_block fs/ext4/inode.c:1696 [inline] ext4_da_map_blocks fs/ext4/inode.c:1806 [inline] ext4_da_get_block_prep+0x9e8/0x13c0 fs/ext4/inode.c:1870 ext4_block_write_begin+0x6a8/0x2290 fs/ext4/inode.c:1098 ext4_da_write_begin+0x539/0x760 fs/ext4/inode.c:3082 generic_perform_write+0x2e4/0x5e0 mm/filemap.c:3772 ext4_buffered_write_iter+0x122/0x3a0 fs/ext4/file.c:285 ext4_file_write_iter+0x1d0/0x18f0 call_write_iter include/linux/fs.h:2186 [inline] new_sync_write fs/read_write.c:491 [inline] vfs_write+0x7dc/0xc50 fs/read_write.c:584 ksys_write+0x177/0x2a0 fs/read_write.c:637 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f4b7a9737b9 RSP: 002b:00007ffc5cac3668 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f4b7a9737b9 RDX: 00000000175d9003 RSI: 0000000020000200 RDI: 0000000000000004 RBP: 00007f4b7a933050 R08: 0000000000000000 R09: 0000000000000000 R10: 000000000000079f R11: 0000000000000246 R12: 00007f4b7a9330e0 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 </TASK> Above issue is happens when enable bigalloc and inline data feature. As commit 131294c35ed6 fixed delayed allocation bug in ext4_clu_mapped for bigalloc + inline. But it only resolved issue when has inline data, if inline data has been converted to extent(ext4_da_convert_inline_data_to_extent) before writepages, there is no EXT4_STATE_MAY_INLINE_DATA flag. However i_data is still store inline data in this scene. Then will trigger UAF when find extent. To resolve above issue, there is need to add judge "ext4_has_inline_data(inode)" in ext4_clu_mapped(). | |||||
| CVE-2023-53718 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Do not swap cpu_buffer during resize process When ring_buffer_swap_cpu was called during resize process, the cpu buffer was swapped in the middle, resulting in incorrect state. Continuing to run in the wrong state will result in oops. This issue can be easily reproduced using the following two scripts: /tmp # cat test1.sh //#! /bin/sh for i in `seq 0 100000` do echo 2000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 echo 5000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 done /tmp # cat test2.sh //#! /bin/sh for i in `seq 0 100000` do echo irqsoff > /sys/kernel/debug/tracing/current_tracer sleep 1 echo nop > /sys/kernel/debug/tracing/current_tracer sleep 1 done /tmp # ./test1.sh & /tmp # ./test2.sh & A typical oops log is as follows, sometimes with other different oops logs. [ 231.711293] WARNING: CPU: 0 PID: 9 at kernel/trace/ring_buffer.c:2026 rb_update_pages+0x378/0x3f8 [ 231.713375] Modules linked in: [ 231.714735] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 231.716750] Hardware name: linux,dummy-virt (DT) [ 231.718152] Workqueue: events update_pages_handler [ 231.719714] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 231.721171] pc : rb_update_pages+0x378/0x3f8 [ 231.722212] lr : rb_update_pages+0x25c/0x3f8 [ 231.723248] sp : ffff800082b9bd50 [ 231.724169] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 231.726102] x26: 0000000000000001 x25: fffffffffffff010 x24: 0000000000000ff0 [ 231.728122] x23: ffff0000c3a0b600 x22: ffff0000c3a0b5c0 x21: fffffffffffffe0a [ 231.730203] x20: ffff0000c3a0b600 x19: ffff0000c0102400 x18: 0000000000000000 [ 231.732329] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffe7aa8510 [ 231.734212] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000002 [ 231.736291] x11: ffff8000826998a8 x10: ffff800082b9baf0 x9 : ffff800081137558 [ 231.738195] x8 : fffffc00030e82c8 x7 : 0000000000000000 x6 : 0000000000000001 [ 231.740192] x5 : ffff0000ffbafe00 x4 : 0000000000000000 x3 : 0000000000000000 [ 231.742118] x2 : 00000000000006aa x1 : 0000000000000001 x0 : ffff0000c0007208 [ 231.744196] Call trace: [ 231.744892] rb_update_pages+0x378/0x3f8 [ 231.745893] update_pages_handler+0x1c/0x38 [ 231.746893] process_one_work+0x1f0/0x468 [ 231.747852] worker_thread+0x54/0x410 [ 231.748737] kthread+0x124/0x138 [ 231.749549] ret_from_fork+0x10/0x20 [ 231.750434] ---[ end trace 0000000000000000 ]--- [ 233.720486] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 233.721696] Mem abort info: [ 233.721935] ESR = 0x0000000096000004 [ 233.722283] EC = 0x25: DABT (current EL), IL = 32 bits [ 233.722596] SET = 0, FnV = 0 [ 233.722805] EA = 0, S1PTW = 0 [ 233.723026] FSC = 0x04: level 0 translation fault [ 233.723458] Data abort info: [ 233.723734] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 233.724176] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 233.724589] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 233.725075] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000104943000 [ 233.725592] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 [ 233.726231] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 233.726720] Modules linked in: [ 233.727007] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 233.727777] Hardware name: linux,dummy-virt (DT) [ 233.728225] Workqueue: events update_pages_handler [ 233.728655] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 233.729054] pc : rb_update_pages+0x1a8/0x3f8 [ 233.729334] lr : rb_update_pages+0x154/0x3f8 [ 233.729592] sp : ffff800082b9bd50 [ 233.729792] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 00000000 ---truncated--- | |||||
| CVE-2022-50582 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: regulator: core: Prevent integer underflow By using a ratio of delay to poll_enabled_time that is not integer time_remaining underflows and does not exit the loop as expected. As delay could be derived from DT and poll_enabled_time is defined in the driver this can easily happen. Use a signed iterator to make sure that the loop exits once the remaining time is negative. | |||||
| CVE-2016-15048 | 2025-10-22 | N/A | N/A | ||
| AMTT Hotel Broadband Operation System (HiBOS) contains an unauthenticated command injection vulnerability in the /manager/radius/server_ping.php endpoint. The application constructs a shell command that includes the user-supplied ip parameter and executes it without proper validation or escaping. An attacker can insert shell metacharacters into the ip parameter to inject and execute arbitrary system commands as the web server user. The initial third-party disclosure in 2016 recommended contacting the vendor for remediation guidance. Additionally, this product may have been rebranded under a different name. VulnCheck has observed this vulnerability being exploited in the wild as of 2025-10-14 at 04:45:53.510819 UTC. | |||||
| CVE-2023-53713 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: arm64: sme: Use STR P to clear FFR context field in streaming SVE mode The FFR is a predicate register which can vary between 16 and 256 bits in size depending upon the configured vector length. When saving the SVE state in streaming SVE mode, the FFR register is inaccessible and so commit 9f5848665788 ("arm64/sve: Make access to FFR optional") simply clears the FFR field of the in-memory context structure. Unfortunately, it achieves this using an unconditional 8-byte store and so if the SME vector length is anything other than 64 bytes in size we will either fail to clear the entire field or, worse, we will corrupt memory immediately following the structure. This has led to intermittent kfence splats in CI [1] and can trigger kmalloc Redzone corruption messages when running the 'fp-stress' kselftest: | ============================================================================= | BUG kmalloc-1k (Not tainted): kmalloc Redzone overwritten | ----------------------------------------------------------------------------- | | 0xffff000809bf1e22-0xffff000809bf1e27 @offset=7714. First byte 0x0 instead of 0xcc | Allocated in do_sme_acc+0x9c/0x220 age=2613 cpu=1 pid=531 | __kmalloc+0x8c/0xcc | do_sme_acc+0x9c/0x220 | ... Replace the 8-byte store with a store of a predicate register which has been zero-initialised with PFALSE, ensuring that the entire field is cleared in memory. [1] https://lore.kernel.org/r/CA+G9fYtU7HsV0R0dp4XEH5xXHSJFw8KyDf5VQrLLfMxWfxQkag@mail.gmail.com | |||||
| CVE-2025-11952 | 2025-10-22 | N/A | N/A | ||
| Stored Cross-site Scripting (XSS) in Oct8ne Chatbot v2.3. This vulnerability allows an attacker to execute JavaScript code in the victim's browser by injecting a malicious payload through the creation of a transcript that is sent by email. This vulnerability can be exploited to steal sensitive user data, such as session cookies, or to perform actions on behalf of the user, through /Records/SendSummaryMail. | |||||
| CVE-2022-50571 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: btrfs: call __btrfs_remove_free_space_cache_locked on cache load failure Now that lockdep is staying enabled through our entire CI runs I started seeing the following stack in generic/475 ------------[ cut here ]------------ WARNING: CPU: 1 PID: 2171864 at fs/btrfs/discard.c:604 btrfs_discard_update_discardable+0x98/0xb0 CPU: 1 PID: 2171864 Comm: kworker/u4:0 Not tainted 5.19.0-rc8+ #789 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Workqueue: btrfs-cache btrfs_work_helper RIP: 0010:btrfs_discard_update_discardable+0x98/0xb0 RSP: 0018:ffffb857c2f7bad0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8c85c605c200 RCX: 0000000000000001 RDX: 0000000000000000 RSI: ffffffff86807c5b RDI: ffffffff868a831e RBP: ffff8c85c4c54000 R08: 0000000000000000 R09: 0000000000000000 R10: ffff8c85c66932f0 R11: 0000000000000001 R12: ffff8c85c3899010 R13: ffff8c85d5be4f40 R14: ffff8c85c4c54000 R15: ffff8c86114bfa80 FS: 0000000000000000(0000) GS:ffff8c863bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2e7f168160 CR3: 000000010289a004 CR4: 0000000000370ee0 Call Trace: __btrfs_remove_free_space_cache+0x27/0x30 load_free_space_cache+0xad2/0xaf0 caching_thread+0x40b/0x650 ? lock_release+0x137/0x2d0 btrfs_work_helper+0xf2/0x3e0 ? lock_is_held_type+0xe2/0x140 process_one_work+0x271/0x590 ? process_one_work+0x590/0x590 worker_thread+0x52/0x3b0 ? process_one_work+0x590/0x590 kthread+0xf0/0x120 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 This is the code ctl = block_group->free_space_ctl; discard_ctl = &block_group->fs_info->discard_ctl; lockdep_assert_held(&ctl->tree_lock); We have a temporary free space ctl for loading the free space cache in order to avoid having allocations happening while we're loading the cache. When we hit an error we free it all up, however this also calls btrfs_discard_update_discardable, which requires block_group->free_space_ctl->tree_lock to be held. However this is our temporary ctl so this lock isn't held. Fix this by calling __btrfs_remove_free_space_cache_locked instead so that we only clean up the entries and do not mess with the discardable stats. | |||||
| CVE-2022-50563 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: dm thin: Fix UAF in run_timer_softirq() When dm_resume() and dm_destroy() are concurrent, it will lead to UAF, as follows: BUG: KASAN: use-after-free in __run_timers+0x173/0x710 Write of size 8 at addr ffff88816d9490f0 by task swapper/0/0 <snip> Call Trace: <IRQ> dump_stack_lvl+0x73/0x9f print_report.cold+0x132/0xaa2 _raw_spin_lock_irqsave+0xcd/0x160 __run_timers+0x173/0x710 kasan_report+0xad/0x110 __run_timers+0x173/0x710 __asan_store8+0x9c/0x140 __run_timers+0x173/0x710 call_timer_fn+0x310/0x310 pvclock_clocksource_read+0xfa/0x250 kvm_clock_read+0x2c/0x70 kvm_clock_get_cycles+0xd/0x20 ktime_get+0x5c/0x110 lapic_next_event+0x38/0x50 clockevents_program_event+0xf1/0x1e0 run_timer_softirq+0x49/0x90 __do_softirq+0x16e/0x62c __irq_exit_rcu+0x1fa/0x270 irq_exit_rcu+0x12/0x20 sysvec_apic_timer_interrupt+0x8e/0xc0 One of the concurrency UAF can be shown as below: use free do_resume | __find_device_hash_cell | dm_get | atomic_inc(&md->holders) | | dm_destroy | __dm_destroy | if (!dm_suspended_md(md)) | atomic_read(&md->holders) | msleep(1) dm_resume | __dm_resume | dm_table_resume_targets | pool_resume | do_waker #add delay work | dm_put | atomic_dec(&md->holders) | | dm_table_destroy | pool_dtr | __pool_dec | __pool_destroy | destroy_workqueue | kfree(pool) # free pool time out __do_softirq run_timer_softirq # pool has already been freed This can be easily reproduced using: 1. create thin-pool 2. dmsetup suspend pool 3. dmsetup resume pool 4. dmsetup remove_all # Concurrent with 3 The root cause of this UAF bug is that dm_resume() adds timer after dm_destroy() skips cancelling the timer because of suspend status. After timeout, it will call run_timer_softirq(), however pool has already been freed. The concurrency UAF bug will happen. Therefore, cancelling timer again in __pool_destroy(). | |||||
| CVE-2025-62661 | 2025-10-22 | N/A | N/A | ||
| Incorrect Default Permissions vulnerability in The Wikimedia Foundation Mediawiki - Thanks Extension, Mediawiki - Growth Experiments Extension allows Accessing Functionality Not Properly Constrained by ACLs.This issue affects Mediawiki - Thanks Extension, Mediawiki - Growth Experiments Extension: from 1.43 before 1.44. | |||||
| CVE-2022-50572 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: ASoC: audio-graph-card: fix refcount leak of cpu_ep in __graph_for_each_link() The of_get_next_child() returns a node with refcount incremented, and decrements the refcount of prev. So in the error path of the while loop, of_node_put() needs be called for cpu_ep. | |||||
| CVE-2023-53722 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: md: raid1: fix potential OOB in raid1_remove_disk() If rddev->raid_disk is greater than mddev->raid_disks, there will be an out-of-bounds in raid1_remove_disk(). We have already found similar reports as follows: 1) commit d17f744e883b ("md-raid10: fix KASAN warning") 2) commit 1ebc2cec0b7d ("dm raid: fix KASAN warning in raid5_remove_disk") Fix this bug by checking whether the "number" variable is valid. | |||||
| CVE-2023-53731 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: netlink: fix potential deadlock in netlink_set_err() syzbot reported a possible deadlock in netlink_set_err() [1] A similar issue was fixed in commit 1d482e666b8e ("netlink: disable IRQs for netlink_lock_table()") in netlink_lock_table() This patch adds IRQ safety to netlink_set_err() and __netlink_diag_dump() which were not covered by cited commit. [1] WARNING: possible irq lock inversion dependency detected 6.4.0-rc6-syzkaller-00240-g4e9f0ec38852 #0 Not tainted syz-executor.2/23011 just changed the state of lock: ffffffff8e1a7a58 (nl_table_lock){.+.?}-{2:2}, at: netlink_set_err+0x2e/0x3a0 net/netlink/af_netlink.c:1612 but this lock was taken by another, SOFTIRQ-safe lock in the past: (&local->queue_stop_reason_lock){..-.}-{2:2} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(nl_table_lock); local_irq_disable(); lock(&local->queue_stop_reason_lock); lock(nl_table_lock); <Interrupt> lock(&local->queue_stop_reason_lock); *** DEADLOCK *** | |||||
| CVE-2022-50580 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: blk-throttle: prevent overflow while calculating wait time There is a problem found by code review in tg_with_in_bps_limit() that 'bps_limit * jiffy_elapsed_rnd' might overflow. Fix the problem by calling mul_u64_u64_div_u64() instead. | |||||
| CVE-2023-53703 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: HID: amd_sfh: Fix for shift-out-of-bounds Shift operation of 'exp' and 'shift' variables exceeds the maximum number of shift values in the u32 range leading to UBSAN shift-out-of-bounds. ... [ 6.120512] UBSAN: shift-out-of-bounds in drivers/hid/amd-sfh-hid/sfh1_1/amd_sfh_desc.c:149:50 [ 6.120598] shift exponent 104 is too large for 64-bit type 'long unsigned int' [ 6.120659] CPU: 4 PID: 96 Comm: kworker/4:1 Not tainted 6.4.0amd_1-next-20230519-dirty #10 [ 6.120665] Hardware name: AMD Birman-PHX/Birman-PHX, BIOS SFH_with_HPD_SEN.FD 04/05/2023 [ 6.120667] Workqueue: events amd_sfh_work_buffer [amd_sfh] [ 6.120687] Call Trace: [ 6.120690] <TASK> [ 6.120694] dump_stack_lvl+0x48/0x70 [ 6.120704] dump_stack+0x10/0x20 [ 6.120707] ubsan_epilogue+0x9/0x40 [ 6.120716] __ubsan_handle_shift_out_of_bounds+0x10f/0x170 [ 6.120720] ? psi_group_change+0x25f/0x4b0 [ 6.120729] float_to_int.cold+0x18/0xba [amd_sfh] [ 6.120739] get_input_rep+0x57/0x340 [amd_sfh] [ 6.120748] ? __schedule+0xba7/0x1b60 [ 6.120756] ? __pfx_get_input_rep+0x10/0x10 [amd_sfh] [ 6.120764] amd_sfh_work_buffer+0x91/0x180 [amd_sfh] [ 6.120772] process_one_work+0x229/0x430 [ 6.120780] worker_thread+0x4a/0x3c0 [ 6.120784] ? __pfx_worker_thread+0x10/0x10 [ 6.120788] kthread+0xf7/0x130 [ 6.120792] ? __pfx_kthread+0x10/0x10 [ 6.120795] ret_from_fork+0x29/0x50 [ 6.120804] </TASK> ... Fix this by adding the condition to validate shift ranges. | |||||
| CVE-2025-41108 | 2025-10-22 | N/A | N/A | ||
| The communication protocol implemented in Ghost Robotics Vision 60 v0.27.2 could allow an attacker to send commands to the robot from an external attack station, impersonating the control station (tablet) and gaining unauthorised full control of the robot. The absence of encryption and authentication mechanisms in the communication protocol allows an attacker to capture legitimate traffic between the robot and the controller, replicate it, and send any valid command to the robot from any attacking computer or device. The communication protocol used in this interface is based on MAVLink, a widely documented protocol, which increases the likelihood of attack. There are two methods for connecting to the robot remotely: Wi-Fi and 4G/LTE. | |||||
| CVE-2022-50579 | 2025-10-22 | N/A | N/A | ||
| In the Linux kernel, the following vulnerability has been resolved: arm64: ftrace: fix module PLTs with mcount Li Huafei reports that mcount-based ftrace with module PLTs was broken by commit: a6253579977e4c6f ("arm64: ftrace: consistently handle PLTs.") When a module PLTs are used and a module is loaded sufficiently far away from the kernel, we'll create PLTs for any branches which are out-of-range. These are separate from the special ftrace trampoline PLTs, which the module PLT code doesn't directly manipulate. When mcount is in use this is a problem, as each mcount callsite in a module will be initialized to point to a module PLT, but since commit a6253579977e4c6f ftrace_make_nop() will assume that the callsite has been initialized to point to the special ftrace trampoline PLT, and ftrace_find_callable_addr() rejects other cases. This means that when ftrace tries to initialize a callsite via ftrace_make_nop(), the call to ftrace_find_callable_addr() will find that the `_mcount` stub is out-of-range and is not handled by the ftrace PLT, resulting in a splat: | ftrace_test: loading out-of-tree module taints kernel. | ftrace: no module PLT for _mcount | ------------[ ftrace bug ]------------ | ftrace failed to modify | [<ffff800029180014>] 0xffff800029180014 | actual: 44:00:00:94 | Initializing ftrace call sites | ftrace record flags: 2000000 | (0) | expected tramp: ffff80000802eb3c | ------------[ cut here ]------------ | WARNING: CPU: 3 PID: 157 at kernel/trace/ftrace.c:2120 ftrace_bug+0x94/0x270 | Modules linked in: | CPU: 3 PID: 157 Comm: insmod Tainted: G O 6.0.0-rc6-00151-gcd722513a189-dirty #22 | Hardware name: linux,dummy-virt (DT) | pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : ftrace_bug+0x94/0x270 | lr : ftrace_bug+0x21c/0x270 | sp : ffff80000b2bbaf0 | x29: ffff80000b2bbaf0 x28: 0000000000000000 x27: ffff0000c4d38000 | x26: 0000000000000001 x25: ffff800009d7e000 x24: ffff0000c4d86e00 | x23: 0000000002000000 x22: ffff80000a62b000 x21: ffff8000098ebea8 | x20: ffff0000c4d38000 x19: ffff80000aa24158 x18: ffffffffffffffff | x17: 0000000000000000 x16: 0a0d2d2d2d2d2d2d x15: ffff800009aa9118 | x14: 0000000000000000 x13: 6333626532303830 x12: 3030303866666666 | x11: 203a706d61727420 x10: 6465746365707865 x9 : 3362653230383030 | x8 : c0000000ffffefff x7 : 0000000000017fe8 x6 : 000000000000bff4 | x5 : 0000000000057fa8 x4 : 0000000000000000 x3 : 0000000000000001 | x2 : ad2cb14bb5438900 x1 : 0000000000000000 x0 : 0000000000000022 | Call trace: | ftrace_bug+0x94/0x270 | ftrace_process_locs+0x308/0x430 | ftrace_module_init+0x44/0x60 | load_module+0x15b4/0x1ce8 | __do_sys_init_module+0x1ec/0x238 | __arm64_sys_init_module+0x24/0x30 | invoke_syscall+0x54/0x118 | el0_svc_common.constprop.4+0x84/0x100 | do_el0_svc+0x3c/0xd0 | el0_svc+0x1c/0x50 | el0t_64_sync_handler+0x90/0xb8 | el0t_64_sync+0x15c/0x160 | ---[ end trace 0000000000000000 ]--- | ---------test_init----------- Fix this by reverting to the old behaviour of ignoring the old instruction when initialising an mcount callsite in a module, which was the behaviour prior to commit a6253579977e4c6f. | |||||
