Vulnerabilities (CVE)

Total 99448 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2025-23151 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-05 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: host: Fix race between unprepare and queue_buf A client driver may use mhi_unprepare_from_transfer() to quiesce incoming data during the client driver's tear down. The client driver might also be processing data at the same time, resulting in a call to mhi_queue_buf() which will invoke mhi_gen_tre(). If mhi_gen_tre() runs after mhi_unprepare_from_transfer() has torn down the channel, a panic will occur due to an invalid dereference leading to a page fault. This occurs because mhi_gen_tre() does not verify the channel state after locking it. Fix this by having mhi_gen_tre() confirm the channel state is valid, or return error to avoid accessing deinitialized data. [mani: added stable tag]
CVE-2025-23159 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-05 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: media: venus: hfi: add a check to handle OOB in sfr region sfr->buf_size is in shared memory and can be modified by malicious user. OOB write is possible when the size is made higher than actual sfr data buffer. Cap the size to allocated size for such cases.
CVE-2025-23161 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-05 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: PCI: vmd: Make vmd_dev::cfg_lock a raw_spinlock_t type The access to the PCI config space via pci_ops::read and pci_ops::write is a low-level hardware access. The functions can be accessed with disabled interrupts even on PREEMPT_RT. The pci_lock is a raw_spinlock_t for this purpose. A spinlock_t becomes a sleeping lock on PREEMPT_RT, so it cannot be acquired with disabled interrupts. The vmd_dev::cfg_lock is accessed in the same context as the pci_lock. Make vmd_dev::cfg_lock a raw_spinlock_t type so it can be used with interrupts disabled. This was reported as: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 Call Trace: rt_spin_lock+0x4e/0x130 vmd_pci_read+0x8d/0x100 [vmd] pci_user_read_config_byte+0x6f/0xe0 pci_read_config+0xfe/0x290 sysfs_kf_bin_read+0x68/0x90 [bigeasy: reword commit message] Tested-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com> [kwilczynski: commit log] [bhelgaas: add back report info from https://lore.kernel.org/lkml/20241218115951.83062-1-ryotkkr98@gmail.com/]
CVE-2025-23163 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-05 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: vlan: don't propagate flags on open With the device instance lock, there is now a possibility of a deadlock: [ 1.211455] ============================================ [ 1.211571] WARNING: possible recursive locking detected [ 1.211687] 6.14.0-rc5-01215-g032756b4ca7a-dirty #5 Not tainted [ 1.211823] -------------------------------------------- [ 1.211936] ip/184 is trying to acquire lock: [ 1.212032] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_set_allmulti+0x4e/0xb0 [ 1.212207] [ 1.212207] but task is already holding lock: [ 1.212332] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0 [ 1.212487] [ 1.212487] other info that might help us debug this: [ 1.212626] Possible unsafe locking scenario: [ 1.212626] [ 1.212751] CPU0 [ 1.212815] ---- [ 1.212871] lock(&dev->lock); [ 1.212944] lock(&dev->lock); [ 1.213016] [ 1.213016] *** DEADLOCK *** [ 1.213016] [ 1.213143] May be due to missing lock nesting notation [ 1.213143] [ 1.213294] 3 locks held by ip/184: [ 1.213371] #0: ffffffff838b53e0 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x1b/0xa0 [ 1.213543] #1: ffffffff84e5fc70 (&net->rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x37/0xa0 [ 1.213727] #2: ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0 [ 1.213895] [ 1.213895] stack backtrace: [ 1.213991] CPU: 0 UID: 0 PID: 184 Comm: ip Not tainted 6.14.0-rc5-01215-g032756b4ca7a-dirty #5 [ 1.213993] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 [ 1.213994] Call Trace: [ 1.213995] <TASK> [ 1.213996] dump_stack_lvl+0x8e/0xd0 [ 1.214000] print_deadlock_bug+0x28b/0x2a0 [ 1.214020] lock_acquire+0xea/0x2a0 [ 1.214027] __mutex_lock+0xbf/0xd40 [ 1.214038] dev_set_allmulti+0x4e/0xb0 # real_dev->flags & IFF_ALLMULTI [ 1.214040] vlan_dev_open+0xa5/0x170 # ndo_open on vlandev [ 1.214042] __dev_open+0x145/0x270 [ 1.214046] __dev_change_flags+0xb0/0x1e0 [ 1.214051] netif_change_flags+0x22/0x60 # IFF_UP vlandev [ 1.214053] dev_change_flags+0x61/0xb0 # for each device in group from dev->vlan_info [ 1.214055] vlan_device_event+0x766/0x7c0 # on netdevsim0 [ 1.214058] notifier_call_chain+0x78/0x120 [ 1.214062] netif_open+0x6d/0x90 [ 1.214064] dev_open+0x5b/0xb0 # locks netdevsim0 [ 1.214066] bond_enslave+0x64c/0x1230 [ 1.214075] do_set_master+0x175/0x1e0 # on netdevsim0 [ 1.214077] do_setlink+0x516/0x13b0 [ 1.214094] rtnl_newlink+0xaba/0xb80 [ 1.214132] rtnetlink_rcv_msg+0x440/0x490 [ 1.214144] netlink_rcv_skb+0xeb/0x120 [ 1.214150] netlink_unicast+0x1f9/0x320 [ 1.214153] netlink_sendmsg+0x346/0x3f0 [ 1.214157] __sock_sendmsg+0x86/0xb0 [ 1.214160] ____sys_sendmsg+0x1c8/0x220 [ 1.214164] ___sys_sendmsg+0x28f/0x2d0 [ 1.214179] __x64_sys_sendmsg+0xef/0x140 [ 1.214184] do_syscall_64+0xec/0x1d0 [ 1.214190] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 1.214191] RIP: 0033:0x7f2d1b4a7e56 Device setup: netdevsim0 (down) ^ ^ bond netdevsim1.100@netdevsim1 allmulticast=on (down) When we enslave the lower device (netdevsim0) which has a vlan, we propagate vlan's allmuti/promisc flags during ndo_open. This causes (re)locking on of the real_dev. Propagate allmulti/promisc on flags change, not on the open. There is a slight semantics change that vlans that are down now propagate the flags, but this seems unlikely to result in the real issues. Reproducer: echo 0 1 > /sys/bus/netdevsim/new_device dev_path=$(ls -d /sys/bus/netdevsim/devices/netdevsim0/net/*) dev=$(echo $dev_path | rev | cut -d/ -f1 | rev) ip link set dev $dev name netdevsim0 ip link set dev netdevsim0 up ip link add link netdevsim0 name netdevsim0.100 type vlan id 100 ip link set dev netdevsim0.100 allm ---truncated---
CVE-2025-37772 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-05 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: RDMA/cma: Fix workqueue crash in cma_netevent_work_handler struct rdma_cm_id has member "struct work_struct net_work" that is reused for enqueuing cma_netevent_work_handler()s onto cma_wq. Below crash[1] can occur if more than one call to cma_netevent_callback() occurs in quick succession, which further enqueues cma_netevent_work_handler()s for the same rdma_cm_id, overwriting any previously queued work-item(s) that was just scheduled to run i.e. there is no guarantee the queued work item may run between two successive calls to cma_netevent_callback() and the 2nd INIT_WORK would overwrite the 1st work item (for the same rdma_cm_id), despite grabbing id_table_lock during enqueue. Also drgn analysis [2] indicates the work item was likely overwritten. Fix this by moving the INIT_WORK() to __rdma_create_id(), so that it doesn't race with any existing queue_work() or its worker thread. [1] Trimmed crash stack: ============================================= BUG: kernel NULL pointer dereference, address: 0000000000000008 kworker/u256:6 ... 6.12.0-0... Workqueue: cma_netevent_work_handler [rdma_cm] (rdma_cm) RIP: 0010:process_one_work+0xba/0x31a Call Trace: worker_thread+0x266/0x3a0 kthread+0xcf/0x100 ret_from_fork+0x31/0x50 ret_from_fork_asm+0x1a/0x30 ============================================= [2] drgn crash analysis: >>> trace = prog.crashed_thread().stack_trace() >>> trace (0) crash_setup_regs (./arch/x86/include/asm/kexec.h:111:15) (1) __crash_kexec (kernel/crash_core.c:122:4) (2) panic (kernel/panic.c:399:3) (3) oops_end (arch/x86/kernel/dumpstack.c:382:3) ... (8) process_one_work (kernel/workqueue.c:3168:2) (9) process_scheduled_works (kernel/workqueue.c:3310:3) (10) worker_thread (kernel/workqueue.c:3391:4) (11) kthread (kernel/kthread.c:389:9) Line workqueue.c:3168 for this kernel version is in process_one_work(): 3168 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); >>> trace[8]["work"] *(struct work_struct *)0xffff92577d0a21d8 = { .data = (atomic_long_t){ .counter = (s64)536870912, <=== Note }, .entry = (struct list_head){ .next = (struct list_head *)0xffff924d075924c0, .prev = (struct list_head *)0xffff924d075924c0, }, .func = (work_func_t)cma_netevent_work_handler+0x0 = 0xffffffffc2cec280, } Suspicion is that pwq is NULL: >>> trace[8]["pwq"] (struct pool_workqueue *)<absent> In process_one_work(), pwq is assigned from: struct pool_workqueue *pwq = get_work_pwq(work); and get_work_pwq() is: static struct pool_workqueue *get_work_pwq(struct work_struct *work) { unsigned long data = atomic_long_read(&work->data); if (data & WORK_STRUCT_PWQ) return work_struct_pwq(data); else return NULL; } WORK_STRUCT_PWQ is 0x4: >>> print(repr(prog['WORK_STRUCT_PWQ'])) Object(prog, 'enum work_flags', value=4) But work->data is 536870912 which is 0x20000000. So, get_work_pwq() returns NULL and we crash in process_one_work(): 3168 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); =============================================
CVE-2025-37773 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-05 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: virtiofs: add filesystem context source name check In certain scenarios, for example, during fuzz testing, the source name may be NULL, which could lead to a kernel panic. Therefore, an extra check for the source name should be added.
CVE-2025-27064 1 Qualcomm 154 Fastconnect 6900, Fastconnect 6900 Firmware, Fastconnect 7800 and 151 more 2025-11-05 N/A 6.1 MEDIUM
Information disclosure while registering commands from clients with diag through diagHal.
CVE-2025-47362 1 Qualcomm 76 Msm8996au, Msm8996au Firmware, Qam8255p and 73 more 2025-11-05 N/A 6.1 MEDIUM
Information disclosure while processing message from client with invalid payload.
CVE-2025-47370 1 Qualcomm 272 Ar8035, Ar8035 Firmware, Csrb31024 and 269 more 2025-11-05 N/A 6.5 MEDIUM
Transient DOS when a remote device sends an invalid connection request during BT connectable LE scan.
CVE-2025-46424 2025-11-05 N/A 6.7 MEDIUM
Dell CloudLink, versions prior to 8.2, contain use of a Cryptographic Primitive with a Risky Implementation vulnerability. A high privileged attacker could potentially exploit this vulnerability leading to Denial of service.
CVE-2025-46366 2025-11-05 N/A 6.7 MEDIUM
Dell CloudLink, versions prior to 8.1.1, contain a vulnerability where a privileged user may exploit and gain parallel privilege escalation or access to the database to obtain confidential information.
CVE-2025-46365 2025-11-05 N/A 5.3 MEDIUM
Dell CloudLink, versions prior 8.1.1, contain a Command Injection vulnerability which can be exploited by an Authenticated attacker to cause Command Injection on an affected Dell CloudLink.
CVE-2025-20377 2025-11-05 N/A 4.3 MEDIUM
A vulnerability in the API subsystem of Cisco Unified Intelligence Center could allow an authenticated, remote attacker to obtain sensitive information from an affected system. This vulnerability is due to improper validation of requests to certain API endpoints. An attacker could exploit this vulnerability by sending a valid request to a specific API endpoint within the affected system. A successful exploit could allow a low-privileged user to view sensitive information on the affected system that should be restricted. To exploit this vulnerability, the attacker must have valid user credentials on the affected system.
CVE-2025-20376 2025-11-05 N/A 6.5 MEDIUM
A vulnerability in the web UI of Cisco Unified CCX could allow an authenticated, remote attacker to upload and execute arbitrary files. This vulnerability is due to an insufficient input validation associated to file upload mechanisms. An attacker could exploit this vulnerability by uploading a malicious file to the web UI and executing it. A successful exploit could allow the attacker to execute arbitrary commands on the underlying system and elevate privileges to root. To exploit this vulnerability, the attacker must have valid administrative credentials.
CVE-2025-20375 2025-11-05 N/A 6.5 MEDIUM
A vulnerability in the web UI of Cisco Unified CCX could allow an authenticated, remote attacker to upload and execute arbitrary files. This vulnerability is due to an insufficient input validation associated to specific UI features. An attacker could exploit this vulnerability by uploading a crafted file to the web UI. A successful exploit could allow the attacker to upload arbitrary files to a vulnerable system and execute them, gaining access to the underlying operating system. To exploit this vulnerability, the attacker must have valid administrative credentials.
CVE-2025-20374 2025-11-05 N/A 4.9 MEDIUM
A vulnerability in the web UI of Cisco Unified CCX could allow an authenticated, remote attacker to perform a directory traversal and access arbitrary resources. This vulnerability is due to an insufficient input validation associated to specific UI features. An attacker could exploit this vulnerability by sending a crafted request to the web UI. A successful exploit could allow the attacker to gain read access to arbitrary files on the underlying operating system.&nbsp;To exploit this vulnerability, the attacker must have valid administrative credentials.
CVE-2025-20305 2025-11-05 N/A 4.3 MEDIUM
A vulnerability in the web-based management interface of Cisco ISE could allow an authenticated, remote attacker to obtain sensitive information from an affected device. This vulnerability exists because certain files lack proper data protection mechanisms. An attacker with read-only Administrator privileges could exploit this vulnerability by performing actions where the results should only be viewable to a high-privileged user. A successful exploit could allow the attacker to view passwords that are normally not visible to read-only administrators.
CVE-2025-20304 2025-11-05 N/A 5.4 MEDIUM
Multiple vulnerabilities in the web-based management interface of Cisco ISE and Cisco ISE-PIC could allow an authenticated, remote attacker to conduct a reflected XSS attack against a user of the interface. These vulnerabilities are due to insufficient validation of user-supplied input by the web-based management interface of an affected system. An attacker could exploit these vulnerabilities by injecting malicious code into specific pages of the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information. To exploit these vulnerabilities, the attacker must have at least a low-privileged account on the affected device.
CVE-2025-20303 2025-11-05 N/A 5.4 MEDIUM
Multiple vulnerabilities in the web-based management interface of Cisco ISE and Cisco ISE-PIC could allow an authenticated, remote attacker to conduct a reflected XSS attack against a user of the interface. These vulnerabilities are due to insufficient validation of user-supplied input by the web-based management interface of an affected system. An attacker could exploit these vulnerabilities by injecting malicious code into specific pages of the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information. To exploit these vulnerabilities, the attacker must have at least a low-privileged account on the affected device.
CVE-2025-20289 2025-11-05 N/A 4.8 MEDIUM
Multiple vulnerabilities in the web-based management interface of Cisco ISE and Cisco ISE-PIC could allow an authenticated, remote attacker to conduct a reflected XSS attack against a user of the interface. These vulnerabilities are due to insufficient validation of user-supplied input by the web-based management interface of an affected system. An attacker could exploit these vulnerabilities by injecting malicious code into specific pages of the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information. To exploit these vulnerabilities, the attacker must have at least a low-privileged account on the affected device.